Mycielski among trees - category case

Marcin Michalski, Robert Rałowski, Szymon Żeberski

15-16 V 2019

The 2-dimensional version of classical Mycielski Theorem says that every comeager or conull subset of $[0, 1]^2$ contains a square of a form $P \times P$, where P is a perfect subset of [0, 1]. We consider generalizations of this theorem by replacing a perfect square with a rectangle of a form $[T_1] \times [T_2]$, where $T_1 \subseteq T_2$ are some type of trees (perfect, uniformly perfect, Silver, Miller or Laver) and [T] denotes a body of a tree T.

During this talk we will focus on category case. In particular we will show that for every comeager G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ there exists a Miller tree $M \subseteq \omega^{<\omega}$ and a uniformly perfect tree $P \subseteq M$ such that $[P] \times [T] \subseteq G$. We will also show that this result is somehow optimal - we cannot replace P with a Silver tree or a Miller tree and no comeager G_{δ} contains a square of bodies of Silver trees or Laver trees.

These results come from a joint work with Robert Rałowski and Szymon Żeberski.