Airy spaces and the Baireness of some function spaces

Taras Banakh

15-16 V 2019

We shall discuss the following problem: characterize metrizable separable spaces X for which the space $B_1(X) \subset \mathbb{R}^X$ of functions of the first Baire class on X is Baire. It turns out that the class of such spaces X is intermediate between the class of λ -spaces and the class of universally meager spaces.

Let us recall that a topological space X is

- a λ -space if every countable subset is of type G_{δ} in X;
- universally meager if for every map $f: B \to X$ from a second countable Baire space B the image f(U) of some nonempty open set $U \subset B$ is a singleton;
- almost analytic if every countable subset of X is contained in an analytic G_{δ} -subspace of X;
- airy if there exists a countable family \mathcal{P} of infinite subsets of X such that or any \mathcal{P} -dense G_{δ} -sets $A, B \subset X$ the intersection $A \cap B$ is not empty.

A subset $D \subset X$ is \mathcal{P} -dense if $\forall P \in \mathcal{P} \ (P \cap D \neq \emptyset)$.

Theorem. For a metrizable separable space X consider the conditions:

- (1) X is a λ -space;
- (2) the function space $B_1(X)$ is Baire;
- (3) X is not airy;
- (4) X is universally meager.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. If the space X is almost analytic, then $(4) \Rightarrow (1)$ and hence the conditions (1)–(4) are equivalent.

This is a joint work with Saak Gabriyelyan.