Semiregular matrices and associated ideals

Jacek Tryba

Konopnica, 16.06.2019

Joint work with Pratulananda Das and Rafał Filipów.

向下 イヨト イヨト

Semiregular matrix

Definition (Toeplitz)

A matrix $A = (a_{i,k})$ with nonnegative elements is regular if

• $\lim_{i\to\infty} a_{i,k} = 0$ for every $k \in \mathbb{N}$;

•
$$\lim_{i \to \infty} \sum_{k \in \mathbb{N}} a_{i,k} = 1$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Semiregular matrix

Definition (Toeplitz)

A matrix $A = (a_{i,k})$ with nonnegative elements is regular if

•
$$\lim_{i\to\infty} a_{i,k} = 0$$
 for every $k \in \mathbb{N}$;

•
$$\lim_{i\to\infty}\sum_{k\in\mathbb{N}}a_{i,k}=1.$$

Definition

A matrix $A = (a_{i,k})$ with nonnegative elements is semiregular if

•
$$\lim_{i\to\infty} a_{i,k} = 0$$
 for every $k \in \mathbb{N}$;

•
$$\lim_{i\to\infty}\sum_{k\in\mathbb{N}}a_{i,k}=\infty.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Semiregular matrix

Definition (Toeplitz)

A matrix $A = (a_{i,k})$ with nonnegative elements is regular if

•
$$\lim_{i\to\infty} a_{i,k} = 0$$
 for every $k \in \mathbb{N}$;

•
$$\lim_{i\to\infty}\sum_{k\in\mathbb{N}}a_{i,k}=1.$$

Definition

A matrix $A = (a_{i,k})$ with nonnegative elements is semiregular if

•
$$\lim_{i\to\infty} a_{i,k} = 0$$
 for every $k \in \mathbb{N}$;

•
$$\lim_{i\to\infty}\sum_{k\in\mathbb{N}}a_{i,k}=\infty.$$

Definition

A semiregular matrix $A = (a_{i,k})$ is

- of type 1 if $\sum_{k \in \mathbb{N}} a_{i,k} < \infty$ for all but finitely many *i*;
- of type 2 if $\sum_{k \in \mathbb{N}} a_{i,k} = \infty$ for infinitely many *i*;

Definition

Let $A = (a_{i,k})$ be a nonnegative matrix of either type. Then

$$\mathcal{I}(A) = \{B \subseteq \mathbb{N} : \lim_{i \to \infty} \sum_{k \in B} \mathsf{a}_{i,k} = \mathsf{0}\}$$

is an ideal called the *matrix ideal* generated by matrix A.

(4回) (4回) (日)

Definition

Let $A = (a_{i,k})$ be a nonnegative matrix of either type. Then

$$\mathcal{I}(A) = \{B \subseteq \mathbb{N} : \lim_{i \to \infty} \sum_{k \in B} \mathsf{a}_{i,k} = \mathsf{0}\}$$

is an ideal called the matrix ideal generated by matrix A.

If $\mathcal{I} = \mathcal{I}(A)$ for some regular matrix A, then we will denote it by $\mathcal{I} \in \mathsf{REG}$. If $\mathcal{I} = \mathcal{I}(A)$ for some semiregular matrix A of type 1 (semiregular of type 2), then we will denote it by $\mathcal{I} \in \mathsf{SR1}(\mathcal{I} \in \mathsf{SR2})$.

A (10) × (10) × (10) ×

 $Fin = \{B \subseteq \mathbb{N} : B \text{ is finite}\} \in \mathsf{REG} \text{ as } Fin = \mathcal{I}(I), \text{ where } I \text{ is the identity matrix}$

$$I = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

イロン 不同 とくほど 不同 とう

臣

 $Fin = \{B \subseteq \mathbb{N} : B \text{ is finite}\} \in \mathsf{REG} \text{ as } Fin = \mathcal{I}(I), \text{ where } I \text{ is the identity matrix}$

$$I = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

 $\mathcal{I}_d = \{B \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|B \cap n|}{n} = 0\} \in \mathsf{REG} \text{ as } \mathcal{I}_d = \mathcal{I}(C),$ where C is the Cesáro matrix

$$C = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ \frac{1}{2} & \frac{1}{2} & 0 & \cdots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

イロト イヨト イヨト

 $\operatorname{Fin} \in \mathsf{SR1}$ as $\operatorname{Fin} = \mathcal{I}(A)$ for

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 2 & 0 & \cdots \\ 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

ヘロア 人間 アメヨア 人間 アー

2

Fin \in SR1 as Fin = $\mathcal{I}(A)$ for

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 2 & 0 & \cdots \\ 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

 $\operatorname{Fin} \in \mathsf{SR2}$ as $\operatorname{Fin} = \mathcal{I}(A)$ for

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots \\ 0 & 1 & 1 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

Theorem (Freedman-Sember)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is a P-ideal, i.e. for every sequence $(A_n)_{n \in \mathbb{N}}$ of sets belonging to \mathcal{I} there exists a set $A \in \mathcal{I}$ such that $A_n \setminus A$ is finite for every n.

Theorem (Bartoszewicz-Das-Głąb)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is $F_{\sigma\delta}$.

向下 イヨト イヨト

Theorem (Freedman-Sember)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is a P-ideal, i.e. for every sequence $(A_n)_{n \in \mathbb{N}}$ of sets belonging to \mathcal{I} there exists a set $A \in \mathcal{I}$ such that $A_n \setminus A$ is finite for every n.

Theorem (Bartoszewicz-Das-Głąb)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is $F_{\sigma\delta}$.

Theorem

Let \mathcal{I} be a matrix ideal. Then \mathcal{I} is $F_{\sigma\delta}$.

Theorem (Freedman-Sember)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is a P-ideal, i.e. for every sequence $(A_n)_{n \in \mathbb{N}}$ of sets belonging to \mathcal{I} there exists a set $A \in \mathcal{I}$ such that $A_n \setminus A$ is finite for every n.

Theorem (Bartoszewicz-Das-Głąb)

Let $\mathcal{I} \in REG$. Then \mathcal{I} is $F_{\sigma\delta}$.

Theorem

Let \mathcal{I} be a matrix ideal. Then \mathcal{I} is $F_{\sigma\delta}$.

Theorem

Let $\mathcal{I} \in SR1$. Then \mathcal{I} is a P-ideal.

(4回) (4回) (4回)

Let $\{P_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} into infinite sets. Then $\mathcal{I} = \{B \subseteq \mathbb{N} : B \cap P_n = \emptyset \text{ for all but finitely many } n\} \in SR2 \text{ and}$ $\mathcal{I} \approx Fin \otimes \emptyset$, so it is not a P-ideal.

(1日) (1日) (1日)

Summable ideals

Definition

Let $f : \mathbb{N} \to [0, \infty)$ be such that $\sum_{n \in \mathbb{N}} f(n) = \infty$. Then $\mathcal{I}_f = \{B \subseteq \mathbb{N} : \sum_{n \in B} f(n) < \infty\}$ is an ideal called *summable ideal*.

イロン 不同 とくほど 不同 とう

Summable ideals

Definition

Let $f : \mathbb{N} \to [0, \infty)$ be such that $\sum_{n \in \mathbb{N}} f(n) = \infty$. Then $\mathcal{I}_f = \{B \subseteq \mathbb{N} : \sum_{n \in B} f(n) < \infty\}$ is an ideal called *summable ideal*.

Theorem (Filipów-Tryba)

If $\lim_{n\to\infty} f(n) = 0$, then $\mathcal{I}_f \notin REG$.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Summable ideals

Definition

Let $f : \mathbb{N} \to [0, \infty)$ be such that $\sum_{n \in \mathbb{N}} f(n) = \infty$. Then $\mathcal{I}_f = \{B \subseteq \mathbb{N} : \sum_{n \in B} f(n) < \infty\}$ is an ideal called *summable ideal*.

Theorem (Filipów-Tryba)

If
$$\lim_{n\to\infty} f(n) = 0$$
, then $\mathcal{I}_f \notin REG$.

Theorem

 $\mathcal{I}_f \in SR2$ for every summable ideal since $\mathcal{I}_f = \mathcal{I}(A)$ for

$$A = \begin{pmatrix} f(1) & f(2) & f(3) & \cdots \\ 0 & f(2) & f(3) & \cdots \\ 0 & 0 & f(3) & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

イロン 不同 とうほう 不同 とう

臣

Let $\mathcal{I} = \mathcal{I}(A)$ for some semiregular matrix A. Then $\mathcal{I} \subseteq \mathcal{I}_f$ for some summable ideal \mathcal{I}_f .

・ 回 ト ・ ヨ ト ・ ヨ ト …

Let $\mathcal{I} = \mathcal{I}(A)$ for some semiregular matrix A. Then $\mathcal{I} \subseteq \mathcal{I}_f$ for some summable ideal \mathcal{I}_f .

Corollary

 $\mathcal{I}_d \notin SR1$ and $\mathcal{I}_d \notin SR2$.

(4回) (4回) (4回)

If $\mathcal{I} \in \mathsf{REG}$ and $\mathcal{I} \subseteq \mathcal{I}_f$ for some summable ideal \mathcal{I}_f , then $\mathcal{I} \in \mathsf{SR2}$.

★週 ▶ ★ 注 ▶ ★ 注 ▶

臣

If $\mathcal{I} \in \mathsf{REG}$ and $\mathcal{I} \subseteq \mathcal{I}_f$ for some summable ideal \mathcal{I}_f , then $\mathcal{I} \in \mathsf{SR2}$.

Theorem

 $\mathcal{I} \in SR1$ if and only if $\mathcal{I} \in REG$ and $\mathcal{I} \in SR2$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Summary

Jacek Tryba Semiregular matrices and associated ideals