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basics of the Hutchinson–Barnsley theory

Assume that X is a metric space.

(*) By K(X ) we denote the family of all nomepty and compact subsets of X .

(*) A finite family of continuous selfmaps of X will be called an iterated
function system (IFS).

(*) If F = {f1, ..., fn} is an IFS, then we define F : K(X )→ K(X ) by

F(K) :=

n⋃
i=1

fi (K)

Theorem(Hutchinson, Barnsley, 1980s’)
If X is complete and F is an IFS on X consisting of Banach (or weak)
contractions, then there exists the unique AF ∈ K(X ) such that

AF = F(AF ) =
n⋃

i=1

fi (AF ).

Moreover, for every K ∈ K(X ), the sequence of iterates F (k)(K) converges to
AF w.r.t. the Hausdorff metric.
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fuzzy sets

Let X ,Y be nonempty sets.

(*) A fuzzy set u on X will be any function u : X → [0, 1].

(*) If u, v are any fuzzy sets on X , then its union u ∪ v is defined by

u ∪ v(x) := max{u(x), v(x)}, x ∈ X .

(*) A fuzzy set u on X will be called a crisp set, if u = χA for some nonempty
A ⊂ X .

(*) If f : X → Y and u : X → [0, 1] is a fuzzy set, then we define the fuzzy
set f (u) on Y by

f (u)(y) := sup{u(x) : x ∈ f −1(y)},

where we additionally assume that sup ∅ = 0.

Remark
If A ⊂ X and f : X → Y , then f (χA) = χf (A).
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fuzzyfication of K(X )

Let X be a metric space and u : X → [0, 1].

(*) If α ∈ [0, 1], then its α-cut is defined by

[u]α :=

{
{x ∈ X :u(x)  α} if α > 0

cl({x ∈ X :u(x) > 0}) if α = 0
.

(*) u is called upper semicontiunous (usc) if each set [u]α is closed.

(*) u is compactly supported, if the set supp(u) := [u]0 is compact.

(*) normal, if u(x) = 1 for some x ∈ X .

Filip Strobin ..



Introduction
Fuzzyfication of the hyperspace K(X )

IFS fuzzyfication
Generalized IFSs and their fuzzyfication

References

fuzzyfication of K(X )

Let X be a metric space and u : X → [0, 1].

(*) If α ∈ [0, 1], then its α-cut is defined by

[u]α :=

{
{x ∈ X :u(x)  α} if α > 0

cl({x ∈ X :u(x) > 0}) if α = 0
.

(*) u is called upper semicontiunous (usc) if each set [u]α is closed.

(*) u is compactly supported, if the set supp(u) := [u]0 is compact.

(*) normal, if u(x) = 1 for some x ∈ X .

Filip Strobin ..



Introduction
Fuzzyfication of the hyperspace K(X )

IFS fuzzyfication
Generalized IFSs and their fuzzyfication

References

fuzzyfication of K(X )

Let X be a metric space and u : X → [0, 1].

(*) If α ∈ [0, 1], then its α-cut is defined by

[u]α :=

{
{x ∈ X :u(x)  α} if α > 0

cl({x ∈ X :u(x) > 0}) if α = 0
.

(*) u is called upper semicontiunous (usc) if each set [u]α is closed.

(*) u is compactly supported, if the set supp(u) := [u]0 is compact.

(*) normal, if u(x) = 1 for some x ∈ X .

Filip Strobin ..



Introduction
Fuzzyfication of the hyperspace K(X )

IFS fuzzyfication
Generalized IFSs and their fuzzyfication

References

fuzzyfication of K(X )

Let X be a metric space and u : X → [0, 1].

(*) If α ∈ [0, 1], then its α-cut is defined by

[u]α :=

{
{x ∈ X :u(x)  α} if α > 0

cl({x ∈ X :u(x) > 0}) if α = 0
.

(*) u is called upper semicontiunous (usc) if each set [u]α is closed.

(*) u is compactly supported, if the set supp(u) := [u]0 is compact.

(*) normal, if u(x) = 1 for some x ∈ X .

Filip Strobin ..



Introduction
Fuzzyfication of the hyperspace K(X )

IFS fuzzyfication
Generalized IFSs and their fuzzyfication

References

fuzzyfication of K(X )

Let X be a metric space and u : X → [0, 1].

(*) If α ∈ [0, 1], then its α-cut is defined by

[u]α :=

{
{x ∈ X :u(x)  α} if α > 0

cl({x ∈ X :u(x) > 0}) if α = 0
.

(*) u is called upper semicontiunous (usc) if each set [u]α is closed.

(*) u is compactly supported, if the set supp(u) := [u]0 is compact.

(*) normal, if u(x) = 1 for some x ∈ X .

Filip Strobin ..



Introduction
Fuzzyfication of the hyperspace K(X )

IFS fuzzyfication
Generalized IFSs and their fuzzyfication

References

fuzzyfication of K(X )

Assume that X is a metric space. Put

KF (X ) := {u : X → [0, 1] : u is usc, compactly supported and normal}.

For u, v ∈ KF (X ), define

d∞(u, v) := sup
α∈[0,1]

h([u]α, [v ]α),

where h is the Hausdorff metric.

Fact
(1) d∞ is a metric on KF (X ).

(2) If X us complete [compact], then KF (X ) is complete [compact].

(3) A ∈ K(X ) iff χA ∈ KF (X ).

(4) For A,B ∈ K(X ), d∞(χA, χB) = h(A,B).
Filip Strobin ..
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IFS fuzzyfication

(*) A family R = {ρ1, ..., ρn} of selfmaps of [0, 1] is called an admissible
system of grey level maps, if

- ρj is nondereasing, usc and ρj (0) = 0 for every j = 1, ..., n;
- ρj (1) = 1 for some j = 1, ..., n.

(*) A fuzzy IFS is a pair (F ,R) that consists of an IFS F and an admissible
system of grey level maps R.

(*) Each fuzzy IFS (F ,R) generates the F : KF (X )→ KF (X ) defined by

F(u) :=
n⋃

j=1

ρj(fj(u)) = max{ρj(fj(u)) : j = 1, ..., n}

Remark
(1) For every x ∈ X ,

F(u)(x) = max{ρj(u(y)) : j = 1, ..., n, y ∈ f −1
j (x)}

(2) For every α ∈ [0, 1],

[F(u)]α =

n⋃
i=1

fj([ρj(u)]
α)

Filip Strobin ..
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fuzzy version of the Hutchinson–Barnsley theorem

Theorem (Cabrelli et.al 1992, Oliveira and S., 2016)
Assume that X is a complete metric space and (F ,R) is a fuzzy IFS consisting
of Banach (or weak) contractions. Then there exists the unique uF ∈ KF (X )

(called the fuzzy attractor) such that F(uF ) = uF .
Moreover, for every u0 ∈ KF (X ), the sequence of iterates F (k)(u0) converges to
uF w.r.t. the metric d∞.

Remark
If uF is a fuzzy attractor, then for every α ∈ [0, 1],

[uF ]
α =

n⋃
j=1

fj([ρj(uF )]
α)

Theorem (Oliveira and S., 2016)
In the above frame, set I = {i : ρj(1) = 1}, and let F ′ = {fi : i ∈ I}. Then
[uF ]

0 = AF and [uF ]
1 = AF′ .
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generalized IFSs

If X is a metric space and m ∈ N, then we endow the Cartesian product Xm

with the maximum metric dm.

Definiton

(*) A finite family G of continuous maps from Xm to X will be called a
generalized iterated function system (GIFS) of order m.

(*) Each GIFS G = {g1, ..., gn} generates the map G : K(X )m → K(X ) by
setting

G(K1, ...,Km) :=

n⋃
j=1

gj(K1 × ...× Km).

(*) A map g : Xm → X is called a generalized Banach contraction of order m,
if Lip(g) < 1.

(*) A map g : Xm → X is called a generalized weak contraction of order m, if
... it satisfies weaker contractive condition.
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Theorem (Mihail, Miculescu, S., Swaczyna 2010’s)
If X is a complete metric space and G = {g1, ..., gn} is a GIFS on X of order m

comprising of generalized weak contractions, then there exists the unique
AG ∈ K(X ) such that

AG = G(AG , ...,AG) =
n⋃

j=1

gj(AG × ...× AG )

Moreover, for every K1, ...,Km ∈ K(X ), the sequence (Kk) defined by

Kk+m = G(Kk , ...,Kk+m−1),

converges to AG .
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GIFS fuzzyfication

(*) For fuzzy set u1, ..., um : X → [0, 1], define u1 × ...× um : Xm → [0, 1] by

(u1 × ....× um)(x1, ..., xm) = min{ui (xi ) : i = 1, ...,m}.

(*) A pair (G,R) will be called a fuzzy GIFS of order m, if G is a GIFS of
order m and R is an admissible system of grey level maps.

(*) Each fuzzy GIFS (G,R) generates the map G : KF (X )m → KF (X ) by

G(u1, ..., um) :=

n⋃
j=1

ρj(gj(u1×...×um)) = max{ρj(gj(u1×...×um)) : j = 1, ..., n}

Remark
(1) For every x ∈ X ,

G(u1, ..., um)(x) = max{ρj((u1 × ...× um)(y)) : j = 1, ..., n, y ∈ f −1
j (x)})}

(2) For every α ∈ [0, 1],

[G(u1, ..., um)]
α =

n⋃
i=1

gj([ρj(u1 × ...× um)]
α)
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fuzzy version of the Hutchinson–Barnsley theorem for GIFSs

Theorem (Oliveira and S., 2016)
Assume that X is a complete metric space and (G,R) is a fuzzy GIFS
consisting of generalized weak contractions. Then there exists the unique
uG ∈ KF (X ) (called the fuzzy attractor) such that G(uG , ..., uG) = uG .
Moreover, for every u1, ..., um ∈ KF (X ), the sequence of iterates (uk) defined by

um+k = G(uk , ..., uk+m−1),

converges to uG w.r.t. the metric d∞.

Remark
If uG is a fuzzy attractor, then for every α ∈ [0, 1],

[uG ]
α =

n⋃
j=1

gj([ρj(uG × ...× uG)]
α)

Theorem (Oliveira and S., 2016)
In the above frame, set I = {i : ρj(1) = 1}, and let G′ = {gi : i ∈ I}. Then
[uG ]

0 = AG and [uG ]
1 = AG′ .
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