ON CANTOR SPACES

Martina Maiuriello

Università degli Studi della Campania "L. Vanvitelli" Department of Mathematics and Physics Caserta, Italy

> June 15-16, 2019 Fifth Workshop in Real Analysis Konopnica, Poland

> > ▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

MARTINA MAIURIELLO

OUTLINE

1 Some definitions and results

2 CANTOR SPACES AND GENERIC PROPERTIES IN $(\mathcal{K}, \mathcal{H})$

3 HAUSDORFF DIMENSION AND STRONGLY MICROSCOPIC CANTOR SPACES

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MARTINA MAIURIELLO

OUTLINE

1 Some definitions and results

2 CANTOR SPACES AND GENERIC PROPERTIES IN $(\mathcal{K}, \mathcal{H})$

3 HAUSDORFF DIMENSION AND STRONGLY MICROSCOPIC CANTOR SPACES

(日)

MARTINA MAIURIELLO

<ロ> (四) (四) (三) (三) (三) (三)

PRELIMINARY DEFINITIONS

DEFINITION

A topological space is a *Cantor space* if it is non-empty, perfect, compact, totally disconnected, and metrizable.

MARTINA MAIURIELLO

PRELIMINARY DEFINITIONS

DEFINITION

A topological space is a *Cantor space* if it is non-empty, perfect, compact, totally disconnected, and metrizable.

BROUWER'S THEOREM

Each Cantor space is homeomorphic to the Cantor ternary set.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MARTINA MAIURIELLO

PRELIMINARY DEFINITIONS

DEFINITION

A set $E \subset \mathbb{R}^n$ is *microscopic* if for each $\epsilon > 0$ there exists a sequence of rectangles $\{I_k\}_{k \in \mathbb{N}}$ such that

$$\mathsf{E} \subseteq \cup_{k \in \mathbb{N}} \mathsf{I}_k$$
 and $\lambda(\mathsf{I}_k) \leq \epsilon^k$, for $k \in \mathbb{N}$,

where λ is the Lebesgue measure on \mathbb{R}^n .

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへで

MARTINA MAIURIELLO

PRELIMINARY DEFINITIONS

DEFINITION

A set $E \subset \mathbb{R}^n$ is *microscopic* if for each $\epsilon > 0$ there exists a sequence of rectangles $\{I_k\}_{k \in \mathbb{N}}$ such that

 $E \subseteq \bigcup_{k \in \mathbb{N}} I_k$ and $\lambda(I_k) \leq \epsilon^k$, for $k \in \mathbb{N}$,

where λ is the Lebesgue measure on \mathbb{R}^n .

DEFINITION

A set $E \subset \mathbb{R}^n$, $n \ge 2$, is *strongly microscopic* if for each $\epsilon > 0$ there exists a sequence of cubes $\{I_k\}_{k \in \mathbb{N}}$ such that

$$E \subseteq \bigcup_{k \in \mathbb{N}} I_k$$
 and $\lambda(I_k) \leq \epsilon^k$, for $k \in \mathbb{N}$.

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへで

MARTINA MAIURIELLO

PRELIMINARY RESULTS

Remark

Let $E \subset \mathbb{R}^n$, $n \geq 2$. Then

E strongly microscopic \Rightarrow *E* microscopic.

MARTINA MAIURIELLO

Remark

Let $E \subset \mathbb{R}^n$, $n \geq 2$. Then

E strongly microscopic \Rightarrow *E* microscopic.

Example [A. Karasińska, E. Wagner-Bojakowska, 2014] Let $A = [0, 1] \times \{0\} \subset \mathbb{R}^2$, $\epsilon > 0$. Let $I_1 = [0, 1] \times [-\frac{\epsilon}{3}, \frac{\epsilon}{3}]$ and $I_k = \emptyset$ for k > 1. Hence, $A \subset \bigcup_{k \in \mathbb{N}} I_k$ and $\lambda(I_k) < \epsilon^k \ \forall k \in \mathbb{N}$. Then, A is microscopic. Suppose that A is strongly microscopic. Let $\epsilon = \frac{1}{16}$. Then, there exists $\{I_k\}_{k \in \mathbb{N}}$ squares with sides of length a_k s.t. $A \subset \bigcup_{k \in \mathbb{N}} I_k$ and $\lambda(I_k) < (\frac{1}{16})^k \ \forall k \in \mathbb{N}$. Hence, $a_k < (\frac{1}{4})^k$ and $1 \le \sum_{k=1}^{\infty} I_k < \sum_{k=1}^{\infty} (\frac{1}{4})^k = \frac{1}{3}$, which is a contraddiction. So A is not strongly microscopic.

PROPOSITION

The following hold in \mathbb{R}^n :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

MARTINA MAIURIELLO

PROPOSITION

The following hold in \mathbb{R}^n :

Every countable set is strongly microscopic.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの

MARTINA MAIURIELLO

PRELIMINARY RESULTS

PROPOSITION

- Every countable set is strongly microscopic.
- Every microscopic set is a null set (meaning that it has Lebesgue *n*-dimensional measure equal to 0).

PROPOSITION

- Every countable set is strongly microscopic.
- Every microscopic set is a null set (meaning that it has Lebesgue *n*-dimensional measure equal to 0).
- Every subset of a (strongly, resp.) microscopic set is (strongly, resp.) microscopic.

PROPOSITION

- Every countable set is strongly microscopic.
- Every microscopic set is a null set (meaning that it has Lebesgue *n*-dimensional measure equal to 0).
- Every subset of a (strongly, resp.) microscopic set is (strongly, resp.) microscopic.
- Every countable union of (strongly, resp.) microscopic sets is (strongly, resp.) microscopic.

PROPOSITION

- Every countable set is strongly microscopic.
- Every microscopic set is a null set (meaning that it has Lebesgue *n*-dimensional measure equal to 0).
- Every subset of a (strongly, resp.) microscopic set is (strongly, resp.) microscopic.
- Every countable union of (strongly, resp.) microscopic sets is (strongly, resp.) microscopic.
- Every strongly microscopic set *E* has α-dimensional Hausdorff measure equal to zero for all α > 0, and thus it has Hausdorff dimension zero.

OUTLINE

1 Some definitions and results

2 CANTOR SPACES AND GENERIC PROPERTIES IN $(\mathcal{K}, \mathcal{H})$

3 HAUSDORFF DIMENSION AND STRONGLY MICROSCOPIC CANTOR SPACES

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MARTINA MAIURIELLO

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 め∢?

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 め∢?

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

(I) The typical $K \in \mathcal{K}$ is a Cantor set;

・ロト・日本・モン・モン・モーションの

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

- (I) The typical $K \in \mathcal{K}$ is a Cantor set;
- (II) the typical $K \in \mathcal{K}$ contains only irrational numbers;

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

- (I) The typical $K \in \mathcal{K}$ is a Cantor set;
- (II) the typical $K \in \mathcal{K}$ contains only irrational numbers;
- (III) the typical $K \in \mathcal{K}$ has Lebesgue measure zero;

The space $(\mathcal{K}, \mathcal{H})$

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

- (I) The typical $K \in \mathcal{K}$ is a Cantor set;
- (II) the typical $K \in \mathcal{K}$ contains only irrational numbers;
- (III) the typical $K \in \mathcal{K}$ has Lebesgue measure zero;
- (IV) the typical $K \in \mathcal{K}$ has Hausdorff dimension zero.

The space $(\mathcal{K}, \mathcal{H})$

Let $n \ge 1$. Consider the space $(\mathcal{K}, \mathcal{H})$, where \mathcal{K} consists of the nonempty, compact subsets of $[0, 1]^n$ furnished with the Hausdorff metric given by

$$\mathcal{H}(A, E) = \inf\{\delta > 0 : A \subset B_{\delta}(E), E \subset B_{\delta}(A)\}.$$

- (I) The typical $K \in \mathcal{K}$ is a Cantor set;
- (II) the typical $K \in \mathcal{K}$ contains only irrational numbers;
- (III) the typical $K \in \mathcal{K}$ has Lebesgue measure zero;
- (IV) the typical $K \in \mathcal{K}$ has Hausdorff dimension zero.

These properties hold in [0, 1] ([A.M. Bruckner, J.B. Bruckner, B.S. Thomson, 1997]) and also in $[0, 1]^n$ ([E. D'Aniello, T.H. Steele, 2015]).

The space $(\mathcal{K}, \mathcal{H})$

DEFINITION

Let $I_1, ..., I_t$ be open intervals (relative to $[0, 1]^n$). Let $B(I_1, ..., I_t)$ be the collection of all $K \in \mathcal{K}$ s.t.:

I
$$K \subseteq \bigcup_{i=1}^{t} I_i;$$

2 $K \cap I_i \neq \emptyset$ for each $i \in \{1, ..., t\}$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

The space $(\mathcal{K}, \mathcal{H})$

DEFINITION

Let $I_1, ..., I_t$ be open intervals (relative to $[0, 1]^n$). Let $B(I_1, ..., I_t)$ be the collection of all $K \in \mathcal{K}$ s.t.:

$$K \subseteq \bigcup_{i=1}^{t} I_i; K \cap I_i \neq \emptyset$$
for each $i \in \{1, ..., t\}.$

LEMMA [E. D'ANIELLO, M., 2019]

Let $I_1, ..., I_t$ be open intervals (relative to $[0, 1]^n$). Then $B(I_1, ..., I_t)$ is open in $(\mathcal{K}, \mathcal{H})$.

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset of $[0, 1]^n$ is a strongly microscopic set.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset of $[0, 1]^n$ is a strongly microscopic set.

Sketch of the proof

Let

 $\mathcal{M}_{\mathcal{SK}} = \{ E \subset [0, 1]^n : E \text{ nonempty, compact and strongly microscopic} \},\$

that is $\mathcal{M}_{S\mathcal{K}} = \mathcal{K} \cap \mathcal{M}_{S}$, where \mathcal{M}_{S} is the family of all strongly microscopic subsets of \mathbb{R}^{n} .

▲□▶▲@▶▲≧▶▲≧▶ 差 のへで

MARTINA MAIURIELLO

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset of $[0, 1]^n$ is a strongly microscopic set.

Sketch of the proof

Let

 $\mathcal{M}_{\mathcal{SK}} = \{ E \subset [0, 1]^n : E \text{ nonempty, compact and strongly microscopic} \},\$

that is $\mathcal{M}_{S\mathcal{K}} = \mathcal{K} \cap \mathcal{M}_{S}$, where \mathcal{M}_{S} is the family of all strongly microscopic subsets of \mathbb{R}^{n} . Then:

· $\mathcal{M}_{\mathcal{SK}}$ is dense in \mathcal{K} .

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset of $[0, 1]^n$ is a strongly microscopic set.

Sketch of the proof

Let

 $\mathcal{M}_{\mathcal{SK}} = \{ E \subset [0, 1]^n : E \text{ nonempty, compact and strongly microscopic} \},\$

that is $\mathcal{M}_{S\mathcal{K}} = \mathcal{K} \cap \mathcal{M}_{S}$, where \mathcal{M}_{S} is the family of all strongly microscopic subsets of \mathbb{R}^{n} . Then:

- $\cdot \mathcal{M}_{\mathcal{SK}}$ is dense in \mathcal{K} .
- $\mathcal{M}_{\mathcal{SK}}$ is a G_{δ} subset of \mathcal{K} . Indeed $\mathcal{M}_{\mathcal{SK}} = \bigcap_{s=1}^{\infty} \mathcal{K}^{[s]}$ where, for each $s \in \mathbb{N}$, $\mathcal{K}^{[s]}$ is the collection of all $E \in \mathcal{K}$ s.t.

 $\exists \{I_j\}_{j \in \mathbb{N}} \text{ sequence of open cubes with } E \subseteq \cup_{j \in \mathbb{N}} I_j, \lambda(I_j) \leq \left(\frac{1}{s}\right)^j,$

and each
$$\mathcal{K}^{[s]}$$
 is open.

OUTLINE

1 Some definitions and results

2 CANTOR SPACES AND GENERIC PROPERTIES IN $(\mathcal{K}, \mathcal{H})$

3 HAUSDORFF DIMENSION AND STRONGLY MICROSCOPIC CANTOR SPACES

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MARTINA MAIURIELLO

Facts:

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

MARTINA MAIURIELLO

Facts:

• The Cantor ternary set is symmetric but it is not microscopic ([J. Appell, E. D'Aniello, M. Väth, 2001]).

Facts:

- The Cantor ternary set is symmetric but it is not microscopic ([J. Appell, E. D'Aniello, M. Väth, 2001]).
- On the other hand, on the real line, there exist symmetric Cantor spaces that are microscopic.

Facts:

- The Cantor ternary set is symmetric but it is not microscopic ([J. Appell, E. D'Aniello, M. Väth, 2001]).
- On the other hand, on the real line, there exist symmetric Cantor spaces that are microscopic.
- More is true: microscopic symmetric Cantor spaces are a residual family ([M. Balcerzak, T. Filipczak, P. Nowakowski, 2019]).

Facts:

- The Cantor ternary set is symmetric but it is not microscopic ([J. Appell, E. D'Aniello, M. Väth, 2001]).
- On the other hand, on the real line, there exist symmetric Cantor spaces that are microscopic.
- More is true: microscopic symmetric Cantor spaces are a residual family ([M. Balcerzak, T. Filipczak, P. Nowakowski, 2019]).

Question 1:

How frequent are strongly microscopic Cantor spaces or, more generally, microscopic Cantor spaces?

Let $\mathcal{IR} = \{(a_1, ..., a_n) \in [0, 1]^n : a_j \in [0, 1] \setminus \mathbb{Q}, \text{ for all } 1 \leq j \leq n\}$ that is, \mathcal{IR} denotes the collection of all points in $[0, 1]^n$ with all the coordinates irrational.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Let $\mathcal{IR} = \{(a_1, ..., a_n) \in [0, 1]^n : a_j \in [0, 1] \setminus \mathbb{Q}, \text{ for all } 1 \leq j \leq n\}$ that is, \mathcal{IR} denotes the collection of all points in $[0, 1]^n$ with all the coordinates irrational. Consider

 $\mathcal{K}_1 = \{ F \in \mathcal{K} : F \text{ is a Cantor space and } F \subseteq \mathcal{I} R \}.$

Let $\mathcal{IR} = \{(a_1, ..., a_n) \in [0, 1]^n : a_j \in [0, 1] \setminus \mathbb{Q}, \text{ for all } 1 \leq j \leq n\}$ that is, \mathcal{IR} denotes the collection of all points in $[0, 1]^n$ with all the coordinates irrational. Consider

 $\mathcal{K}_1 = \{ F \in \mathcal{K} : F \text{ is a Cantor space and } F \subseteq \mathcal{I}R \}.$

THEOREM [E. D'ANIELLO, T.H. STEELE, 2015]

The collection \mathcal{K}_1 is a dense set of type G_{δ} in \mathcal{K} .

MARTINA MAIURIELLO

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

STRONGLY MICROSCOPIC CANTOR SPACES

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset K of $[0, 1]^n$ is a strongly microscopic Cantor space.

MARTINA MAIURIELLO

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset K of $[0, 1]^n$ is a strongly microscopic Cantor space.

Proof

The collection of the non-empty, compact and strongly microscopic subsets of $[0, 1]^n$, that is $\mathcal{M}_{S\mathcal{K}}$, is a dense set of type G_{δ} .

THEOREM [E. D'ANIELLO, M., 2019]

The typical compact subset K of $[0, 1]^n$ is a strongly microscopic Cantor space.

Proof

The collection of the non-empty, compact and strongly microscopic subsets of $[0, 1]^n$, that is $\mathcal{M}_{S\mathcal{K}}$, is a dense set of type G_{δ} . The collection \mathcal{K}_1 also is a dense G_{δ} set. Since the intersection of two dense G_{δ} sets is still a dense G_{δ} set, the thesis follows.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

QUESTION

PROPERTY

Every strongly microscopic set $E \subset \mathbb{R}^n$ has α -dimensional Hausdorff measure equal to zero for all $\alpha > 0$, and thus it has Hausdorff dimension zero.

MARTINA MAIURIELLO

QUESTION

PROPERTY

Every strongly microscopic set $E \subset \mathbb{R}^n$ has α -dimensional Hausdorff measure equal to zero for all $\alpha > 0$, and thus it has Hausdorff dimension zero.

Question 2: The previous implication can be reverted? ([E. D'Aniello, M., 2019])

MARTINA MAIURIELLO

Fix
$$c \ge 2^n + 1$$
, let $V_0 = 1$, and $V_k = \frac{1}{c^{k^2}}$ for $k \in \mathbb{N}$.

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ○ ○ ○ ○

MARTINA MAIURIELLO

イロト (過) (ヨ) (ヨ) (ヨ) ()

AN EXAMPLE

Fix $c \ge 2^n + 1$, let $V_0 = 1$, and $V_k = \frac{1}{c^{k^2}}$ for $k \in \mathbb{N}$. At the first step we select 2^n disjoint cubes in $[0, 1]^n$ of measure $V_1 = \frac{1}{c}$, and having one vertex in common with $[0, 1]^n$. We list these cubes as Q_{i_1} , with $i_1 \in \{1, ..., 2^n\}$.

MARTINA MAIURIELLO

Fix $c \ge 2^n + 1$, let $V_0 = 1$, and $V_k = \frac{1}{c^{k^2}}$ for $k \in \mathbb{N}$. At the first step we select 2^n disjoint cubes in $[0, 1]^n$ of measure $V_1 = \frac{1}{c}$, and having one vertex in common with $[0, 1]^n$. We list these cubes as Q_{i_1} , with $i_1 \in \{1, ..., 2^n\}$. At the second step, in each Q_{i_1} , we select 2^n disjoint cubes of measure $V_2 = \frac{1}{c^4}$, having one vertex in common with Q_{i_1} . We list them as Q_{i_1, i_2} , with $(i_1, i_2) \in \{1, ..., 2^n\}^2$.

MARTINA MAIURIELLO

Fix $c \ge 2^n + 1$, let $V_0 = 1$, and $V_k = \frac{1}{c^{k^2}}$ for $k \in \mathbb{N}$. At the first step we select 2^n disjoint cubes in $[0, 1]^n$ of measure $V_1 = \frac{1}{2}$, and having one vertex in common with $[0, 1]^n$. We list these cubes as Q_{i_1} , with $i_1 \in \{1, ..., 2^n\}$. At the second step, in each Q_{i_1} , we select 2^n disjoint cubes of measure $V_2 = \frac{1}{\alpha^4}$, having one vertex in common with Q_{i_1} . We list them as Q_{i_1,i_2} , with $(i_1,i_2) \in \{1,...,2^n\}^2$. At the k-th step, in each $Q_{i_1,...,i_{k-1}}$ with $(i_1,...,i_{k-1}) \in \{1,...,2^n\}^{k-1}$, we select 2^{*n*} disjoint cubes of measure $V_k = \frac{1}{a^{k^2}}$ and having one vertex in common with $Q_{i_1,\ldots,i_{k-1}}$. We list these cubes as Q_{i_1,\ldots,i_k} , $(i_1, \dots, i_k) \in \{1, \dots, 2^n\}^k$.

for each $k \in \mathbb{N}$, at the k-th step we have constructed a collection of cubes $Q_k = \{Q_{i_1,...,i_k}, \text{ with } (i_1,...,i_k) \in \{1,...,2^n\}^k\}$ s.t.:

▲口 → ▲団 → ▲目 → ▲目 → ▲回 →

MARTINA MAIURIELLO

for each $k \in \mathbb{N}$, at the k-th step we have constructed a collection of cubes $\mathcal{Q}_k = \{Q_{i_1,...,i_k}, \text{ with } (i_1,...,i_k) \in \{1,...,2^n\}^k\}$ s.t.:

each Q_{i_1} contains a vertex of $[0, 1]^n$; for k > 1 each $Q_{i_1,...,i_k}$ has one vertex in common with $Q_{i_1,...,i_{k-1}}$ and $\lambda(Q_{i_1,...,i_k}) = V_k = \frac{1}{ck^2}$;

for each $k \in \mathbb{N}$, at the k-th step we have constructed a collection of cubes $\mathcal{Q}_k = \{Q_{i_1,...,i_k}, \text{ with } (i_1,...,i_k) \in \{1,...,2^n\}^k\}$ s.t.:

- each Q_{i_1} contains a vertex of $[0, 1]^n$; for k > 1 each $Q_{i_1,...,i_k}$ has one vertex in common with $Q_{i_1,...,i_{k-1}}$ and $\lambda(Q_{i_1,...,i_k}) = V_k = \frac{1}{c^{k^2}}$;
- 2 for each $(i_1, ..., i_{k-1}, j_k), (i_1, ..., i_{k-1}, j'_k)$, with $j_k, j'_k \in \{1, ..., 2^n\}$, we have $dist(Q_{i_1, ..., i_{k-1}, j_k}, Q_{i_1, ..., i_{k-1}, j'_k}) \ge \frac{1}{\sqrt[n]{c^{(k-1)^2}}} \frac{2}{\sqrt[n]{c^{k^2}}}$ and, if we set

 $d_k = \frac{1}{\sqrt[n]{c^{(k-1)^2}}} - \frac{2}{\sqrt[n]{c^{k^2}}}$, then d_k^n is the Lebesgue measure of the largest cube contained in $Q_{i_1,\ldots,i_{k-1}} \setminus \bigcup_{i_k \in \{1,\ldots,2^n\}} Q_{i_1,\ldots,i_k}$, having inner points in common with at most one cube Q_{i_1,\ldots,i_k} .

for each $k \in \mathbb{N}$, at the k-th step we have constructed a collection of cubes $\mathcal{Q}_k = \{Q_{i_1,...,i_k}, \text{ with } (i_1,...,i_k) \in \{1,...,2^n\}^k\}$ s.t.:

- each Q_{i_1} contains a vertex of $[0, 1]^n$; for k > 1 each $Q_{i_1,...,i_k}$ has one vertex in common with $Q_{i_1,...,i_{k-1}}$ and $\lambda(Q_{i_1,...,i_k}) = V_k = \frac{1}{c^{k^2}}$;
- 2 for each $(i_1, ..., i_{k-1}, j_k), (i_1, ..., i_{k-1}, j'_k)$, with $j_k, j'_k \in \{1, ..., 2^n\}$, we have $dist(Q_{i_1, ..., i_{k-1}, j_k}, Q_{i_1, ..., i_{k-1}, j'_k}) \ge \frac{1}{\sqrt[n]{c^{(k-1)^2}}} \frac{2}{\sqrt[n]{c^{k^2}}}$ and, if we set

 $d_k = \frac{1}{\sqrt[n]{c^{(k-1)^2}}} - \frac{2}{\sqrt[n]{c^{k^2}}}$, then d_k^n is the Lebesgue measure of the largest cube contained in $Q_{i_1,\ldots,i_{k-1}} \setminus \bigcup_{i_k \in \{1,\ldots,2^n\}} Q_{i_1,\ldots,i_k}$, having inner points in common with at most one cube Q_{i_1,\ldots,i_k} .

3 for each $(i_1, ..., i_k), (j_1, ..., j_k) \in \{1, ..., 2^n\}^k$, we have *dist*($Q_{i_1,...,i_k}, Q_{j_1,...,j_k}$) ≥ D_k , where

$$D_1 = d_1$$
, for $k \ge 2$, $D_k = min\{d_k, D_{k-1}\}$,

and D_k^n is the Lebesgue measure of the largest cube contained in $[0, 1]^n \setminus \bigcup_{(i_1, \dots, i_k) \in \{1, \dots, 2^n\}^k} Q_{i_1, \dots, i_k}$, having inner points in common with at most one cube Q_{i_1, \dots, i_k} , with $(i_1, \dots, i_k) \in \{1, \dots, 2^n\}^k$.

MARTINA MAIURIELLO

Let $C = \cap_{k \in \mathbb{N}} \cup_{(i_1,...,i_k) \in \{1,...,2^n\}^k} Q_{i_1,...,i_k}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

MARTINA MAIURIELLO

Let $C = \cap_{k \in \mathbb{N}} \cup_{(i_1,...,i_k) \in \{1,...,2^n\}^k} Q_{i_1,...,i_k}$.

• $\mathcal{H}^{\alpha}(C) = 0$ for each $\alpha > 0$ and thus *C* has Hausdorff dimension 0.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

MARTINA MAIURIELLO

Let $C = \cap_{k \in \mathbb{N}} \cup_{(i_1,...,i_k) \in \{1,...,2^n\}^k} Q_{i_1,...,i_k}$.

- $\mathcal{H}^{\alpha}(C) = 0$ for each $\alpha > 0$ and thus *C* has Hausdorff dimension 0.
- *C* is not microscopic and hence it is not strongly microscopic.

Thank you for your attention!

<ロ> <四> <四> <四> <三</p>

MARTINA MAIURIELLO

REFERENCES

- J. Appell, E. D'Aniello, M. Väth, Some remarks on small sets, Ricerche Mat., 50(2):255–274, addendum volume 2005, 2001.
- M. Balcerzak, T. Filipczak, P. Nowakowski, Families of symmetric Cantor sets from the category and measure viewpoints, Georgian Math. J. (to appear), 2019.
- A.M. Bruckner, J.B. Bruckner, B.S. Thomson, *Real Analysis*, Prentice-Hall Inc., 1997.
- E. D'Aniello, M. M., On some frequent small Cantor spaces, preprint, 2019.
- E. D'Aniello, T.H. Steele, Attractor for iterated function schemes on [0, 1]^N are exceptional, Journal of Math. Anal. and Appl., 424(1):537–541, 2015.
- A. Karasińska, E. Wagner-Bojakowska, Microscopic and strongly microscopic sets on the plane. Fubini theorem and Fubini property, Demonstratio Math., 47(3):581–594, 2014.