Compactly supported analytic P-ideals

Piotr Borodulin-Nadzieja

Konopnicka 2019
joint work with Barnabas Farkas

Ideals on ω.

- \mathcal{I} is an ideal on ω;

Ideals on ω.

- \mathcal{I} is an ideal on ω;
- \mathcal{I} can be treated as a subset of 2^{ω}

Ideals on ω.

- \mathcal{I} is an ideal on ω;
- \mathcal{I} can be treated as a subset of $2^{\omega}\left(\right.$ via $\left.A \mapsto \chi_{A}\right)$;

Ideals on ω.

$\Rightarrow \mathcal{I}$ is an ideal on ω;
$-\mathcal{I}$ can be treated as a subset of $2^{\omega}\left(\right.$ via $\left.A \mapsto \chi_{A}\right)$;

- \mathcal{I} is a P -ideal if for each $\left(A_{n}\right)$ from \mathcal{I}, there is $A \in \mathcal{I}$ such that $A_{n} \subseteq^{*} A$ for every n.

Solecki's theorem.

- Let φ be a LSC submeasure (taking finite values on finite sets). Define

Solecki's theorem.

- Let φ be a LSC submeasure (taking finite values on finite sets). Define

$$
\Rightarrow \operatorname{Fin}(\varphi)=\{A \subseteq \omega: \varphi(A)<\infty\} .
$$

Solecki's theorem.

- Let φ be a LSC submeasure (taking finite values on finite sets). Define
- $\operatorname{Fin}(\varphi)=\{A \subseteq \omega: \varphi(A)<\infty\}$.
- $\operatorname{Exh}(\varphi)=\left\{A \subseteq \omega: \lim _{n} \varphi(A \backslash n)=0\right\}$.

Solecki's theorem.

- Let φ be a LSC submeasure (taking finite values on finite sets). Define
- $\operatorname{Fin}(\varphi)=\{A \subseteq \omega: \varphi(A)<\infty\}$.
- $\operatorname{Exh}(\varphi)=\left\{A \subseteq \omega: \lim _{n} \varphi(A \backslash n)=0\right\}$.
- Both $\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$ are analytic P-ideals.

Solecki's theorem.

- Let φ be a LSC submeasure (taking finite values on finite sets). Define
- $\operatorname{Fin}(\varphi)=\{A \subseteq \omega: \varphi(A)<\infty\}$.
- $\operatorname{Exh}(\varphi)=\left\{A \subseteq \omega: \lim _{n} \varphi(A \backslash n)=0\right\}$.
- Both $\operatorname{Fin}(\varphi)$ and $\operatorname{Exh}(\varphi)$ are analytic P-ideals.
- Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$
\mathcal{I}=\operatorname{Exh}(\varphi)
$$

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let $x \in[0, \infty)^{\omega}$.

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let $x \in[0, \infty)^{\omega}$.
Define

$$
\varphi_{\mathcal{F}, x}(A)=\sup \left\{\sum_{n \in F} x_{n}: F \in \mathcal{F}\right\}
$$

and

$$
\mathcal{I}_{\mathcal{F}, x}=\operatorname{Exh}\left(\varphi_{\mathcal{F}, x}\right)
$$

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.
Let

$$
\lambda=(1,1 / 2,1 / 2, \underbrace{1 / 4, \cdots, 1 / 4}_{4 \text { times }}, \underbrace{1 / 8, \cdots, 1 / 8}_{8 \text { times }}, \cdots) .
$$

How to generate ideals from families of finite sets

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.
Let

$$
\lambda=(1,1 / 2,1 / 2, \underbrace{1 / 4, \cdots, 1 / 4}_{4 \text { times }}, \underbrace{1 / 8, \cdots, 1 / 8}_{8 \text { times }}, \cdots) .
$$

Define

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

and

$$
\mathcal{I}_{\mathcal{F}}=\operatorname{Exh}\left(\varphi_{\mathcal{F}}\right)
$$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

- $\mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

$\triangleright \mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

$\triangleright \mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
$\triangleright \mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

$\triangleright \mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
จ $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

$\triangleright \mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,

- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
$\triangleright \mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

- $\mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
$\triangleright \mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$ the density ideal,

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

- $\mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
- $\mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$ the density ideal,
- $\mathcal{F}=\{$ antichains $\} \quad \mathcal{I}_{\mathcal{F}}=$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

- $\mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
- $\mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$ the density ideal,
- $\mathcal{F}=\{$ antichains $\} \quad \mathcal{I}_{\mathcal{F}}=\operatorname{tr}(\mathcal{N})$,

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

- $\mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,
- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
$\triangleright \mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$ the density ideal,
- $\mathcal{F}=\{$ antichains $\} \quad \mathcal{I}_{\mathcal{F}}=\operatorname{tr}(\mathcal{N})$,
$\triangleright \mathcal{F}=\left\{F \in[\omega]^{<\omega}:\left|F \cap\left[2^{n}, 2^{n+1}\right)\right|<2^{n} / n\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}-$

Examples

$$
\varphi_{\mathcal{F}}(A)=\sup \left\{\sum_{n \in F} \lambda_{n}: F \in \mathcal{F}\right\}
$$

$\triangleright \mathcal{F}-\{$ singletons $\} \quad \mathcal{I}_{\mathcal{F}}=\mathcal{P}(\omega)$,

- $\mathcal{F}=[\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}}=$ the summable ideal,
- $\mathcal{F}=\left\{\left[2^{n}, 2^{n+1}\right): n \in \omega\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}=$ the density ideal,
- $\mathcal{F}=\{$ antichains $\} \quad \mathcal{I}_{\mathcal{F}}=\operatorname{tr}(\mathcal{N})$,
$\triangleright \mathcal{F}=\left\{F \in[\omega]^{<\omega}:\left|F \cap\left[2^{n}, 2^{n+1}\right)\right|<2^{n} / n\right\}^{\downarrow} \quad \mathcal{I}_{\mathcal{F}}$-Farah's ideal.

Theorem

Theorem
Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in[0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F}, x}$ is non-trivial, then it is not F_{σ}.

Theorem

Theorem

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in[0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F}, x}$ is non-trivial, then it is not F_{σ}.

Proof.

- \mathcal{F} is scattered,

Theorem

Theorem

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in[0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F}, x}$ is non-trivial, then it is not F_{σ}.

Proof.

$\checkmark \mathcal{F}$ is scattered,

- \mathcal{F} is homeomorphic to $\alpha+1$ for some limit α,

Theorem

Theorem

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in[0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F}, x}$ is non-trivial, then it is not F_{σ}.

Proof.

$-\mathcal{F}$ is scattered,

- \mathcal{F} is homeomorphic to $\alpha+1$ for some limit α,
${ }^{\text {w }}$ we may represent $\mathcal{I}_{\mathcal{F}, x}$ in $C(\alpha+1)$,

Theorem

Theorem

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in[0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F}, x}$ is non-trivial, then it is not F_{σ}.

Proof.

- \mathcal{F} is scattered,
- \mathcal{F} is homeomorphic to $\alpha+1$ for some limit α,
- we may represent $\mathcal{I}_{\mathcal{F}, x}$ in $C(\alpha+1)$,
\downarrow and then the proof starts.

Application: DU problem

Theorem
Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2 .
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

Application: DU problem

Theorem

Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2 .
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

Proof.

- Assume \mathcal{F} is as above, but there is no homogenuous N.

Application: DU problem

Theorem

Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.
Proof.

- Assume \mathcal{F} is as above, but there is no homogenuous N.
- \mathcal{F} is compact.

Application: DU problem

Theorem

Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.
Proof.

- Assume \mathcal{F} is as above, but there is no homogenuous N.
- \mathcal{F} is compact.
${ }^{-} \mathcal{I}_{\mathcal{F}, \mu}=\operatorname{Fin}(\mu)$.

Application: DU problem

Theorem

Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.
Proof.

- Assume \mathcal{F} is as above, but there is no homogenuous N.
- \mathcal{F} is compact.
${ }^{-} \mathcal{I}_{\mathcal{F}, \mu}=\operatorname{Fin}(\mu)$.
$\triangleright \mathcal{I}_{\mathcal{F}, \mu}$ is F_{σ}.

Application: DU problem

Theorem

Let μ be a measure on ω such that $\mu(\{n\}) \rightarrow 0$ and $\mu(\omega)=\infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in[\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

$$
\mu(F)>\mu(A) / 2
$$

Then there is $N \in[\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.
Proof.

- Assume \mathcal{F} is as above, but there is no homogenuous N.
- \mathcal{F} is compact.
- $\mathcal{I}_{\mathcal{F}, \mu}=\operatorname{Fin}(\mu)$.
$\triangleright \mathcal{I}_{\mathcal{F}, \mu}$ is F_{σ}. Contradiction.

Application: Mazur's Lemma

Theorem (Mazur's Lemma)

Let X be a Banach space and let $\left(x_{n}\right)$ be a bounded weakly null sequence in X. Then for each $\varepsilon>0$ there is a finite convex combination $y=\sum_{i} \alpha_{i} x_{i}$ such that $\|y\|<\varepsilon$.

Application: Mazur's Lemma

Theorem (Mazur's Lemma)
Let X be a Banach space and let $\left(x_{n}\right)$ be a bounded weakly null sequence in X. Then for each $\varepsilon>0$ there is a finite convex combination $y=\sum_{i} \alpha_{i} x_{i}$ such that $\|y\|<\varepsilon$.

Theorem (Mazur's Lemma +)
Let X be a Banach space, $\left(x_{n}\right)$ be a bounded weakly null sequence in X, and let μ be a measure on ω such that $\mu(\omega)=\infty$ and $\mu(\{n\}) \rightarrow 0$. Then for each $\varepsilon>0$ there is a finite $G \subseteq \omega$ and a convex combination $y=\sum_{i \in G} \alpha_{i} x_{i}$ where $\alpha_{i}=\mu(\{i\}) / \mu(G)$, such that $\|y\|<\varepsilon$.

Application: Schreier ideals

Let $\mathcal{S}=\left\{F \in[\omega]^{<\omega}:|F| \leq \min F+1\right\}$.

Application: Schreier ideals

Let $\mathcal{S}=\left\{F \in[\omega]^{<\omega}:|F| \leq \min F+1\right\}$.
Theorem
$\mathcal{I}_{\mathcal{S}}=$ the density ideal

Application: Schreier ideals

Let $\mathcal{S}=\left\{F \in[\omega]^{<\omega}:|F| \leq \min F+1\right\}$.
Theorem
$\mathcal{I}_{\mathcal{S}}=$ the density ideal
One can define recursively Schreier families of higher order: \mathcal{S}_{α}, $\alpha<\omega_{1}$, e.g.

$$
\mathcal{S}_{2}=\left\{\bigcup_{j \leq n} F_{j}: F_{0}<\cdots<F_{n} \in \mathcal{S}, n \leq \min F_{0}+1\right\}
$$

Application: Schreier ideals

Let $\mathcal{S}=\left\{F \in[\omega]^{<\omega}:|F| \leq \min F+1\right\}$.
Theorem
$\mathcal{I}_{\mathcal{S}}=$ the density ideal
One can define recursively Schreier families of higher order: \mathcal{S}_{α}, $\alpha<\omega_{1}$, e.g.

$$
\mathcal{S}_{2}=\left\{\bigcup_{j \leq n} F_{j}: F_{0}<\cdots<F_{n} \in \mathcal{S}, n \leq \min F_{0}+1\right\}
$$

Theorem

For each $\alpha<\omega_{1}$

$$
\mathcal{I}_{\mathcal{S}_{\alpha+1}}=\operatorname{Exh}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \operatorname{Fin}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \operatorname{Exh}\left(\varphi_{\mathcal{S}_{\alpha}}\right)=\mathcal{I}_{\mathcal{S}_{\alpha}} .
$$

Application: Schreier ideals

Theorem
For each $\alpha<\omega_{1}$

$$
\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}} .
$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s Schreier ideals. Are they pairwise different?

Application: Schreier ideals

Theorem
For each $\alpha<\omega_{1}$

$$
\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}} .
$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s Schreier ideals. Are they pairwise different?
Corollary:
Since \mathcal{S}_{α} is compact for each α and

Application: Schreier ideals

Theorem
For each $\alpha<\omega_{1}$

$$
\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}
$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s Schreier ideals. Are they pairwise different?
Corollary:
Since \mathcal{S}_{α} is compact for each α and $\operatorname{Fin}(\varphi)$ is always an F_{σ} ideal,

Application: Schreier ideals

Theorem
For each $\alpha<\omega_{1}$

$$
\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}\left(\varphi_{\mathcal{S}_{\alpha+1}}\right) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}
$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s Schreier ideals. Are they pairwise different?
Corollary:
Since \mathcal{S}_{α} is compact for each α and $\operatorname{Fin}(\varphi)$ is always an F_{σ} ideal, for each α we have $\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subsetneq \mathcal{I}_{\mathcal{S}_{\alpha}}$.

Thanks.

