Compactly supported analytic P-ideals

Piotr Borodulin-Nadzieja

Konopnicka 2019

joint work with Barnabas Farkas

 $\blacktriangleright \mathcal{I}$ is an ideal on ω ;

- $\blacktriangleright \mathcal{I}$ is an ideal on ω ;
- $\blacktriangleright~\mathcal{I}$ can be treated as a subset of 2^ω

- $\blacktriangleright \mathcal{I}$ is an ideal on ω ;
- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);

- \mathcal{I} is an ideal on ω ;
- \mathcal{I} can be treated as a subset of 2^{ω} (via $A \mapsto \chi_A$);
- ▶ \mathcal{I} is a P-ideal if for each (A_n) from \mathcal{I} , there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for every n.

$$\succ \quad \vdash \quad \operatorname{Fin}(\varphi) = \{A \subseteq \omega \colon \varphi(A) < \infty\}.$$

► Fin(
$$\varphi$$
) = {A ⊆ ω : φ (A) < ∞}.
► Exh(φ) = {A ⊆ ω : lim_n φ (A \ n) = 0}.

► Fin(
$$\varphi$$
) = {A ⊆ ω : φ (A) < ∞}.
► Exh(φ) = {A ⊆ ω : lim_n φ (A \ n) = 0}.

• Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.

► Fin(
$$\varphi$$
) = {A ⊆ ω : φ (A) < ∞}.
► Exh(φ) = {A ⊆ ω : lim_n φ (A \ n) = 0}.

- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.
- Theorem (Solecki) For every analytic P-ideal there is an LSC submeasure φ such that

$$\mathcal{I} = \mathrm{Exh}(\varphi).$$

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let $x \in [0, \infty)^{\omega}$. Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let $x \in [0, \infty)^{\omega}$. Define

$$\varphi_{\mathcal{F},x}(A) = \sup\{\sum_{n\in F} x_n \colon F\in \mathcal{F}\}$$

and

$$\mathcal{I}_{\mathcal{F},x} = \mathrm{Exh}(\varphi_{\mathcal{F},x}).$$

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$.

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let

$$\lambda = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

Let \mathcal{F} be a family of finite subsets of ω (covering ω). Assume that \mathcal{F} is hereditary, i.e. $F \in \mathcal{F}$ whenever $F \subseteq G$ for some $G \in \mathcal{F}$. Let

$$\lambda = (1, 1/2, 1/2, \underbrace{1/4, \cdots, 1/4}_{4 \text{ times}}, \underbrace{1/8, \cdots, 1/8}_{8 \text{ times}}, \cdots).$$

Define

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

and

 $\mathcal{I}_{\mathcal{F}} = \mathrm{Exh}(\varphi_{\mathcal{F}}).$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

 $\blacktriangleright \ \mathcal{F} - \{ \text{ singletons } \} \qquad \mathcal{I}_{\mathcal{F}} =$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}} \lambda_n \colon \mathcal{F} \in \mathcal{F}\}$$

$$\succ \mathcal{F} - \{ \text{ singletons } \} \quad \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega),$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

$$\mathcal{F} - \{ \text{ singletons } \} \quad \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega),$$
$$\mathcal{F} = [\omega]^{<\omega} \quad \mathcal{I}_{\mathcal{F}} =$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}} \lambda_n \colon \mathcal{F} \in \mathcal{F}\}$$

$$\begin{array}{l} \succ \ \mathcal{F} \ - \ \{ \ \text{singletons} \ \} \qquad \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega), \\ \blacktriangleright \ \mathcal{F} = [\omega]^{<\omega} \qquad \mathcal{I}_{\mathcal{F}} = \text{the summable ideal,} \end{array}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}} \lambda_n \colon \mathcal{F} \in \mathcal{F}\}$$

$$\begin{array}{l} \mathcal{F} - \{ \text{ singletons } \} & \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega), \\ \mathcal{F} = [\omega]^{<\omega} & \mathcal{I}_{\mathcal{F}} = \text{the summable ideal,} \\ \mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}^{\downarrow} & \mathcal{I}_{\mathcal{F}} = \text{the density ideal,} \end{array}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}} \lambda_n \colon \mathcal{F} \in \mathcal{F}\}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}} \lambda_n \colon \mathcal{F} \in \mathcal{F}\}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

$$\begin{array}{l} \mathcal{F} - \{ \text{ singletons} \} \qquad \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega), \\ \mathcal{F} = [\omega]^{<\omega} \qquad \mathcal{I}_{\mathcal{F}} = \text{the summable ideal,} \\ \mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}^{\downarrow} \qquad \mathcal{I}_{\mathcal{F}} = \text{the density ideal,} \\ \mathcal{F} = \{ \text{ antichains} \} \qquad \mathcal{I}_{\mathcal{F}} = \text{tr}(\mathcal{N}), \\ \mathcal{F} = \{ F \in [\omega]^{<\omega} \colon |F \cap [2^n, 2^{n+1})| < 2^n/n \}^{\downarrow} \qquad \mathcal{I}_{\mathcal{F}} = \mathcal{I}_{\mathcal{F}} = \mathcal{I}_{\mathcal{F}} - \mathcal{I}_{\mathcal{F}} = \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}} = \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}} = \mathcal{I}_{\mathcal{F}} + \mathcal{I}_{\mathcal{F}}$$

$$\varphi_{\mathcal{F}}(\mathcal{A}) = \sup\{\sum_{n\in \mathcal{F}}\lambda_n\colon \mathcal{F}\in \mathcal{F}\}$$

$$\begin{array}{l} \mathcal{F} - \{ \text{ singletons } \} \qquad \mathcal{I}_{\mathcal{F}} = \mathcal{P}(\omega), \\ \mathcal{F} = [\omega]^{<\omega} \qquad \mathcal{I}_{\mathcal{F}} = \text{the summable ideal,} \\ \mathcal{F} = \{ [2^n, 2^{n+1}) \colon n \in \omega \}^{\downarrow} \qquad \mathcal{I}_{\mathcal{F}} = \text{the density ideal,} \\ \mathcal{F} = \{ \text{ antichains } \} \qquad \mathcal{I}_{\mathcal{F}} = \text{tr}(\mathcal{N}), \\ \mathcal{F} = \{ F \in [\omega]^{<\omega} \colon |F \cap [2^n, 2^{n+1})| < 2^n/n \}^{\downarrow} \qquad \mathcal{I}_{\mathcal{F}} - \text{Farah's ideal.} \end{array}$$

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in [0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F},x}$ is non-trivial, then it is not F_{σ} .

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in [0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F},x}$ is non-trivial, then it is not F_{σ} .

Proof.

 \blacktriangleright \mathcal{F} is scattered,

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in [0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F},x}$ is non-trivial, then it is not F_{σ} .

- ▶ *F* is scattered,
- \mathcal{F} is homeomorphic to $\alpha + 1$ for some limit α ,

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in [0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F},x}$ is non-trivial, then it is not F_{σ} .

- ▶ *F* is scattered,
- \mathcal{F} is homeomorphic to $\alpha + 1$ for some limit α ,
- we may *represent* $\mathcal{I}_{\mathcal{F},x}$ in $C(\alpha + 1)$,

Assume \mathcal{F} is compact (as a subset of 2^{ω}) and $x \in [0, \infty)^{\omega}$. If $\mathcal{I}_{\mathcal{F},x}$ is non-trivial, then it is not F_{σ} .

- ▶ *F* is scattered,
- \mathcal{F} is homeomorphic to $\alpha + 1$ for some limit α ,
- we may *represent* $\mathcal{I}_{\mathcal{F},x}$ in $C(\alpha + 1)$,
- and then the proof starts.

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

Proof.

• Assume \mathcal{F} is as above, but there is no *homogenuous* N.

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

Proof.

Assume \$\mathcal{F}\$ is as above, but there is no homogenuous \$N\$.
\$\mathcal{F}\$ is compact.

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

- Assume \mathcal{F} is as above, but there is no *homogenuous* N.
- *F* is compact.

$$\blacktriangleright \mathcal{I}_{\mathcal{F},\mu} = \operatorname{Fin}(\mu).$$

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

- Assume \mathcal{F} is as above, but there is no *homogenuous* N.
- *F* is compact.
- $\blacktriangleright \mathcal{I}_{\mathcal{F},\mu} = \operatorname{Fin}(\mu).$
- $\blacktriangleright \mathcal{I}_{\mathcal{F},\mu}$ is F_{σ} .

Let μ be a measure on ω such that $\mu(\{n\}) \to 0$ and $\mu(\omega) = \infty$. Assume \mathcal{F} is hereditary, covers ω and is such that for each $A \in [\omega]^{<\omega}$ there is $F \in \mathcal{F}$ such that $F \subseteq A$ and

 $\mu(F) > \mu(A)/2.$

Then there is $N \in [\omega]^{\omega}$ such that $[N]^{<\omega} \subseteq \mathcal{F}$.

- ▶ Assume *F* is as above, but there is no *homogenuous N*.
- *F* is compact.
- $\blacktriangleright \mathcal{I}_{\mathcal{F},\mu} = \operatorname{Fin}(\mu).$
- $\mathcal{I}_{\mathcal{F},\mu}$ is F_{σ} . Contradiction.

Theorem (Mazur's Lemma)

Let X be a Banach space and let (x_n) be a bounded weakly null sequence in X. Then for each $\varepsilon > 0$ there is a finite convex combination $y = \sum_i \alpha_i x_i$ such that $||y|| < \varepsilon$.

Theorem (Mazur's Lemma)

Let X be a Banach space and let (x_n) be a bounded weakly null sequence in X. Then for each $\varepsilon > 0$ there is a finite convex combination $y = \sum_i \alpha_i x_i$ such that $||y|| < \varepsilon$.

Theorem (Mazur's Lemma +)

Let X be a Banach space, (x_n) be a bounded weakly null sequence in X, and let μ be a measure on ω such that $\mu(\omega) = \infty$ and $\mu(\{n\}) \to 0$. Then for each $\varepsilon > 0$ there is a finite $G \subseteq \omega$ and a convex combination $y = \sum_{i \in G} \alpha_i x_i$ where $\alpha_i = \mu(\{i\})/\mu(G)$, such that $||y|| < \varepsilon$.

Application: Schreier ideals

Let
$$\mathcal{S} = \{F \in [\omega]^{<\omega} \colon |F| \le \min F + 1\}.$$

Application: Schreier ideals

Let
$$S = \{F \in [\omega]^{<\omega} \colon |F| \le \min F + 1\}.$$

Theorem

 $\mathcal{I}_{\mathcal{S}} = \textit{the density ideal}$

Let
$$S = \{F \in [\omega]^{<\omega} \colon |F| \le \min F + 1\}.$$

 $\mathcal{I}_{\mathcal{S}} =$ the density ideal

One can define recursively Schreier families of higher order: \mathcal{S}_{α} , $\alpha<\omega_{1}$, e.g.

$$\mathcal{S}_2 = \{\bigcup_{j \le n} F_j \colon F_0 < \cdots < F_n \in \mathcal{S}, n \le \min F_0 + 1\}$$

Let
$$S = \{F \in [\omega]^{<\omega} \colon |F| \le \min F + 1\}.$$

 $\mathcal{I}_{\mathcal{S}} =$ the density ideal

One can define recursively Schreier families of higher order: \mathcal{S}_{α} , $\alpha<\omega_{1}$, e.g.

$$\mathcal{S}_2 = \{\bigcup_{j \le n} F_j \colon F_0 < \cdots < F_n \in \mathcal{S}, n \le \min F_0 + 1\}$$

Theorem

For each $\alpha < \omega_1$

$$\mathcal{I}_{\mathcal{S}_{lpha+1}} = \operatorname{Exh}(arphi_{\mathcal{S}_{lpha+1}}) \subseteq \operatorname{Fin}(arphi_{\mathcal{S}_{lpha+1}}) \subseteq \operatorname{Exh}(arphi_{\mathcal{S}_{lpha}}) = \mathcal{I}_{\mathcal{S}_{lpha}}.$$

$$\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}(\varphi_{\mathcal{S}_{\alpha+1}}) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}.$$

We call $\mathcal{I}_{S_{\alpha}}$'s *Schreier ideals*. Are they pairwise different?

$$\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}(\varphi_{\mathcal{S}_{\alpha+1}}) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}.$$

We call $\mathcal{I}_{S_{\alpha}}$'s *Schreier ideals*. Are they pairwise different? Corollary:

Since \mathcal{S}_{α} is compact for each α and

$$\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}(\varphi_{\mathcal{S}_{\alpha+1}}) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}.$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s *Schreier ideals*. Are they pairwise different?

Corollary:

Since S_{α} is compact for each α and $Fin(\varphi)$ is always an F_{σ} ideal,

$$\mathcal{I}_{\mathcal{S}_{\alpha+1}} \subseteq \operatorname{Fin}(\varphi_{\mathcal{S}_{\alpha+1}}) \subseteq \mathcal{I}_{\mathcal{S}_{\alpha}}.$$

We call $\mathcal{I}_{\mathcal{S}_{\alpha}}$'s Schreier ideals. Are they pairwise different?

Corollary:

Since S_{α} is compact for each α and $Fin(\varphi)$ is always an F_{σ} ideal, for each α we have $\mathcal{I}_{S_{\alpha+1}} \subsetneq \mathcal{I}_{S_{\alpha}}$.

Thanks.