Baire category properties of some function spaces

Taras Banakh

Lviv & Kielce

Konopnica, 15 June 2019

T.Banakh Baire category properties of some function spaces

Example

- The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.
- The Dirichlet function, i.e., the characteristic function *χ*_Q : ℝ → {0,1} of the set Q is not of the first Baire class.

Why?

Example

- The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.
- The Dirichlet function, i.e., the characteristic function $\chi_{\mathbb{Q}} : \mathbb{R} \to \{0, 1\}$ of the set \mathbb{Q} is not of the first Baire class.

Why?

/□ ▶ ▲ 글 ▶ ▲ 글

Example

- The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.
- The Dirichlet function, i.e., the characteristic function *χ*_Q : ℝ → {0,1} of the set Q is not of the first Baire class.

Why?

何 ト イ ヨ ト イ ヨ ト

Example

• The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.

• The Dirichlet function, i.e., the characteristic function $\chi_{\mathbb{Q}}: \mathbb{R} \to \{0, 1\}$ of the set \mathbb{Q} is not of the first Baire class.

Why?

Example

- The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.
- The Dirichlet function, i.e., the characteristic function $\chi_{\mathbb{Q}}: \mathbb{R} \to \{0, 1\}$ of the set \mathbb{Q} is not of the first Baire class.

何 ト イ ヨ ト イ ヨ ト

Example

- The function $\mathrm{sign}:\mathbb{R}\to\{-1,0,1\}$ is discontinuous but is of the first Baire class.
- The Dirichlet function, i.e., the characteristic function $\chi_{\mathbb{Q}}: \mathbb{R} \to \{0, 1\}$ of the set \mathbb{Q} is not of the first Baire class.

Why?

Characterization of functions of the first Baire class

Theorem (Lebesgue, Hausdorff, Banach)

A function $f : X \to \mathbb{R}$ on a normal space X is of the first Baire class if an only if X is F_{σ} -measurable in the sense that for any open set $U \subset \mathbb{R}$ the preimage $f^{-1}(U)$ is of type F_{σ} in X.

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a Q-space. **Fact:** Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable Q-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

伺 ト イ ヨ ト イ ヨ

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a Q-space. **Fact:** Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable Q-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a Q-space. **Fact:** Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable Q-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a *Q*-space.

Fact: Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable *Q*-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

伺 ト イヨト イヨト

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a *Q*-space. **Fact:** Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable *Q*-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

伺 ト イヨ ト イヨト

Definition

A topological space X is called a *Q*-space if each subset of X is of type F_{σ} in X.

Example: The space \mathbb{Q} of rationals is a *Q*-space. **Fact:** Under $2^{\omega_1} > \mathfrak{c}$ (which holds under CH), each second-countable *Q*-space is countable.

Corollary (of Lebesgue–Hausdorff–Banach)

A normal space X is a Q-space if and only if $B_1(X) = \mathbb{R}^X$.

伺下 イヨト イヨト

Corollary

If a normal space X is a Q-space, then $B_1(X) = \mathbb{R}^X$ and hence $B_1(X)$ is a Baire space.

Problem (Gabriyelyan)

Characterize Tychonoff spaces X having Baire $B_1(X)$.

We recall that a topological space X is *Baire* if for any sequence $(U_n)_{n \in \omega}$ of open dense sets in X the intersection $\bigcap_{n \in \omega} U_n$ is dense in X.

/⊒ ▶ ◀ ⊒ ▶ ◀

Corollary

If a normal space X is a Q-space, then $B_1(X) = \mathbb{R}^X$ and hence $B_1(X)$ is a Baire space.

Problem (Gabriyelyan)

Characterize Tychonoff spaces X having Baire $B_1(X)$.

We recall that a topological space X is *Baire* if for any sequence $(U_n)_{n \in \omega}$ of open dense sets in X the intersection $\bigcap_{n \in \omega} U_n$ is dense in X.

.

Corollary

If a normal space X is a Q-space, then $B_1(X) = \mathbb{R}^X$ and hence $B_1(X)$ is a Baire space.

Problem (Gabriyelyan)

Characterize Tychonoff spaces X having Baire $B_1(X)$.

We recall that a topological space X is *Baire* if for any sequence $(U_n)_{n \in \omega}$ of open dense sets in X the intersection $\bigcap_{n \in \omega} U_n$ is dense in X.

Image: A image: A

Player E starts the game choosing a non-empty open set $V_1 \subset X$ and player N responds selecting a nonempty open set $W_1 \subset V_1$. At the *n*th inning player E chooses a nonempty open set $V_n \subset W_{n-1}$ and player N responds selecting a non-empty open set $W_n \subset V_n$.

At the end of the game $G_{EN}(X)$ the player E is declared the winner if $\bigcap_{n \in \omega} V_n = \bigcap_{m \in \omega} W_n$ is empty.

Otherwise the player N wins the game $G_{EN}(X)$.

The game $G_{NE}(X)$ differs from the game $G_{EN}(X)$ by the order of players: the player N starts the game and plays first in each inning.

(日)

Player E starts the game choosing a non-empty open set $V_1 \subset X$ and player N responds selecting a nonempty open set $W_1 \subset V_1$. At the *n*th inning player E chooses a nonempty open set $V_n \subset W_{n-1}$ and player N responds selecting a non-empty open set $W_n \subset V_n$.

At the end of the game $G_{EN}(X)$ the player E is declared the winner if $\bigcap_{n \in \omega} V_n = \bigcap_{m \in \omega} W_n$ is empty.

Otherwise the player N wins the game $G_{EN}(X)$.

The game $G_{NE}(X)$ differs from the game $G_{EN}(X)$ by the order of players: the player N starts the game and plays first in each inning.

くロ と く 同 と く ヨ と 一

Player E starts the game choosing a non-empty open set $V_1 \subset X$ and player N responds selecting a nonempty open set $W_1 \subset V_1$. At the *n*th inning player E chooses a nonempty open set $V_n \subset W_{n-1}$ and player N responds selecting a non-empty open set $W_n \subset V_n$.

At the end of the game $G_{EN}(X)$ the player E is declared the winner if $\bigcap_{n \in \omega} V_n = \bigcap_{m \in \omega} W_n$ is empty.

Otherwise the player N wins the game $G_{EN}(X)$.

The game $G_{NE}(X)$ differs from the game $G_{EN}(X)$ by the order of players: the player N starts the game and plays first in each inning.

Player E starts the game choosing a non-empty open set $V_1 \subset X$ and player N responds selecting a nonempty open set $W_1 \subset V_1$. At the *n*th inning player E chooses a nonempty open set $V_n \subset W_{n-1}$ and player N responds selecting a non-empty open set $W_n \subset V_n$.

At the end of the game $G_{EN}(X)$ the player E is declared the winner if $\bigcap_{n \in \omega} V_n = \bigcap_{m \in \omega} W_n$ is empty. Otherwise the player N wins the game $G_{EN}(X)$.

The game $G_{NE}(X)$ differs from the game $G_{EN}(X)$ by the order of players: the player N starts the game and plays first in each inning.

Player E starts the game choosing a non-empty open set $V_1 \subset X$ and player N responds selecting a nonempty open set $W_1 \subset V_1$. At the *n*th inning player E chooses a nonempty open set $V_n \subset W_{n-1}$ and player N responds selecting a non-empty open set $W_n \subset V_n$.

At the end of the game $G_{EN}(X)$ the player E is declared the winner if $\bigcap_{n \in \omega} V_n = \bigcap_{m \in \omega} W_n$ is empty.

Otherwise the player N wins the game $G_{EN}(X)$.

The game $G_{NE}(X)$ differs from the game $G_{EN}(X)$ by the order of players: the player N starts the game and plays first in each inning.

Theorem (Oxtoby)

A topological space X is

- Baire iff player E has no wining strategy in the game G_{EN}(X);
- meager iff player E has a winning strategy in $G_{NE}(X)$.

Definition

A topological space X is *Choquet* if player N has a winning strategy in X.

Theorem (Choquet)

A metrizable space X is Choquet if and only if X is almost Čech-complete, i.e., X contains a dense Čech-complete subspace.

For any topological space X we have the implications:

Theorem (Oxtoby)

- A topological space X is
 - Baire iff player E has no wining strategy in the game G_{EN}(X);
 - meager iff player E has a winning strategy in $G_{NE}(X)$.

Definition

A topological space X is *Choquet* if player N has a winning strategy in X.

Theorem (Choquet)

A metrizable space X is Choquet if and only if X is almost Čech-complete, i.e., X contains a dense Čech-complete subspace.

For any topological space X we have the implications:

Ilmost Čech-complete \Rightarrow Choquet \Rightarrow Baire.

Theorem (Oxtoby)

A topological space X is

- Baire iff player E has no wining strategy in the game G_{EN}(X);
- meager iff player E has a winning strategy in $G_{NE}(X)$.

Definition

A topological space X is *Choquet* if player N has a winning strategy in X.

Theorem (Choquet)

A metrizable space X is Choquet if and only if X is almost Čech-complete, i.e., X contains a dense Čech-complete subspace.

For any topological space X we have the implications:

almost Čech-complete \Rightarrow Choquet \Rightarrow Baire.

Theorem (Oxtoby)

- A topological space X is
 - Baire iff player E has no wining strategy in the game G_{EN}(X);
 - meager iff player E has a winning strategy in $G_{NE}(X)$.

Definition

A topological space X is *Choquet* if player N has a winning strategy in X.

Theorem (Choquet)

A metrizable space X is Choquet if and only if X is almost Čech-complete, i.e., X contains a dense Čech-complete subspace.

For any topological space X we have the implications:

almost Čech-complete \Rightarrow Choquet \Rightarrow Baire.

It is known that for any set X the space \mathbb{R}^X is Choquet.

Corollary

For any normal Q-space X the space $B_1(X) = \mathbb{R}^X$ is Choquet.

Problem

Characterize Tychonoff spaces X whose space $B_1(X)$ is Choquet.

Theorem (Banakh–Hryniv, 2018)

A topological group X is Choquet if and only if its Raikov completion \overline{X} is Choquet and X is G_{δ} -dense in \overline{X} .

A subset X of a topological space \bar{X} is called G_{δ} -dense in \bar{X} if X has nonempty intersection with any non-empty G_{δ} -set $G \subset \bar{X}$.

A (1) > (1) = (1) (1)

It is known that for any set X the space \mathbb{R}^X is Choquet.

Corollary

For any normal Q-space X the space $B_1(X) = \mathbb{R}^X$ is Choquet.

Problem

Characterize Tychonoff spaces X whose space $B_1(X)$ is Choquet.

Theorem (Banakh–Hryniv, 2018)

A topological group X is Choquet if and only if its Raikov completion \overline{X} is Choquet and X is G_{δ} -dense in \overline{X} .

A subset X of a topological space \bar{X} is called G_{δ} -dense in \bar{X} if X has nonempty intersection with any non-empty G_{δ} -set $G \subset \bar{X}$.

マロト イヨト イヨ

It is known that for any set X the space \mathbb{R}^X is Choquet.

Corollary

For any normal Q-space X the space $B_1(X) = \mathbb{R}^X$ is Choquet.

Problem

Characterize Tychonoff spaces X whose space $B_1(X)$ is Choquet.

Theorem (Banakh–Hryniv, 2018)

A topological group X is Choquet if and only if its Raikov completion \overline{X} is Choquet and X is G_{δ} -dense in \overline{X} .

A subset X of a topological space \bar{X} is called G_{δ} -dense in \bar{X} if X has nonempty intersection with any non-empty G_{δ} -set $G \subset \bar{X}$.

伺下 イラト イラ

It is known that for any set X the space \mathbb{R}^X is Choquet.

Corollary

For any normal Q-space X the space $B_1(X) = \mathbb{R}^X$ is Choquet.

Problem

Characterize Tychonoff spaces X whose space $B_1(X)$ is Choquet.

Theorem (Banakh–Hryniv, 2018)

A topological group X is Choquet if and only if its Raikov completion \overline{X} is Choquet and X is G_{δ} -dense in \overline{X} .

A subset X of a topological space \bar{X} is called G_{δ} -dense in \bar{X} if X has nonempty intersection with any non-empty G_{δ} -set $G \subset \bar{X}$.

• • = = • • = =

It is known that for any set X the space \mathbb{R}^X is Choquet.

Corollary

For any normal Q-space X the space $B_1(X) = \mathbb{R}^X$ is Choquet.

Problem

Characterize Tychonoff spaces X whose space $B_1(X)$ is Choquet.

Theorem (Banakh–Hryniv, 2018)

A topological group X is Choquet if and only if its Raikov completion \overline{X} is Choquet and X is G_{δ} -dense in \overline{X} .

A subset X of a topological space \bar{X} is called G_{δ} -dense in \bar{X} if X has nonempty intersection with any non-empty G_{δ} -set $G \subset \bar{X}$.

• • = = • • = =

A topological space X is called a λ -space if each countable subset in X is of type G_{δ} in X.

It is clear that each Q-space is a λ -space. But in contrast to Q-spaces, uncountable λ -spaces do exist in ZFC.

Theorem (B.-Gabriyelyan)

For a normal space X of countable pseudocharacter the following conditions are equivalent:

- In $B_1(X)$ is a Choquet space;
- 2 $B_1(X)$ is G_{δ} -dense in \mathbb{R}^X ;

3 X is a λ -space.

/⊒ ▶ ◀ ⊒ ▶ ◀

A topological space X is called a λ -space if each countable subset in X is of type G_{δ} in X.

It is clear that each Q-space is a λ -space.

But in contrast to Q-spaces, uncountable λ -spaces do exist in ZFC.

Theorem (B.-Gabriyelyan)

For a normal space X of countable pseudocharacter the following conditions are equivalent:

- In $B_1(X)$ is a Choquet space;
- \bigcirc $B_1(X)$ is G_{δ} -dense in \mathbb{R}^X ;

3 X is a λ -space.

A topological space X is called a λ -space if each countable subset in X is of type G_{δ} in X.

It is clear that each Q-space is a λ -space. But in contrast to Q-spaces, uncountable λ -spaces do exist in ZFC.

Theorem (B.-Gabriyelyan)

For a normal space X of countable pseudocharacter the following conditions are equivalent:

- In $B_1(X)$ is a Choquet space;
- 2 $B_1(X)$ is G_{δ} -dense in \mathbb{R}^X ;

3 X is a λ -space.

/□ ▶ ◀ ⋽ ▶ ◀

A topological space X is called a λ -space if each countable subset in X is of type G_{δ} in X.

It is clear that each Q-space is a λ -space.

But in contrast to Q-spaces, uncountable λ -spaces do exist in ZFC.

Theorem (B.-Gabriyelyan)

For a normal space X of countable pseudocharacter the following conditions are equivalent:

- $B_1(X)$ is a Choquet space;
- **2** $B_1(X)$ is G_{δ} -dense in \mathbb{R}^X ;

X is a λ-space.

So, for any metrizable space X we have the implications:

Let Γ be a family of subsets of a topological space X. Two sets $A, B \subset X$ are called Γ -separated if there are disjoint sets $\tilde{A}, \tilde{B} \in \Gamma$ such that $A \subset \tilde{A}$ and $B \subset \tilde{B}$.

The Γ -separation game SG $_{\Gamma}(X)$ of a topological space X is played by two players:

S and N (abbreviated from Separating and Non-separating). Player N starts the game selecting a finite set $F_1 \subset X$ and player S responds selecting two disjoint finite sets $A_1, B_1 \subset X \setminus F_1$. At the *n*-th inning player N sects a finite set $F_n \subset X$ containing $F_{n-1} \cup A_{n-1} \cup B_{n-1}$ and player S selects two disjoint finite sets $A_n, B_n \subset X \setminus F_n$.

At the end of the game the player S is declared a winner if the countable sets $\bigcup_{n\in\omega} A_n$ and $\bigcup_{n\in\omega} B_n$ are Γ -separated. Otherwise player N wins the game SG_{Γ}(X).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Γ be a family of subsets of a topological space X. Two sets $A, B \subset X$ are called Γ -separated if there are disjoint sets $\tilde{A}, \tilde{B} \in \Gamma$ such that $A \subset \tilde{A}$ and $B \subset \tilde{B}$. The Γ -separation game SG_{Γ}(X) of a topological space X is played by two players: S and N (abbreviated from Separating and Non-separating).

< 同 > < 国 > < 国 >

Let Γ be a family of subsets of a topological space X. Two sets $A, B \subset X$ are called Γ -separated if there are disjoint sets $\tilde{A}, \tilde{B} \in \Gamma$ such that $A \subset \tilde{A}$ and $B \subset \tilde{B}$.

The Γ -separation game SG_{Γ}(X) of a topological space X is played by two players:

S and N (abbreviated from Separating and Non-separating). Player N starts the game selecting a finite set $F_1 \subset X$ and player S responds selecting two disjoint finite sets $A_1, B_1 \subset X \setminus F_1$. At the *n*-th inning player N sects a finite set $F_n \subset X$ containing $F_{n-1} \cup A_{n-1} \cup B_{n-1}$ and player S selects two disjoint finite sets $A_n, B_n \subset X \setminus F_n$.

At the end of the game the player S is declared a winner if the countable sets $\bigcup_{n\in\omega} A_n$ and $\bigcup_{n\in\omega} B_n$ are Γ -separated. Otherwise player N wins the game SG_{Γ}(X).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let Γ be a family of subsets of a topological space X. Two sets $A, B \subset X$ are called Γ -separated if there are disjoint sets $\tilde{A}, \tilde{B} \in \Gamma$ such that $A \subset \tilde{A}$ and $B \subset \tilde{B}$.

The Γ -separation game SG_{Γ}(X) of a topological space X is played by two players:

S and N (abbreviated from Separating and Non-separating). Player N starts the game selecting a finite set $F_1 \subset X$ and player S responds selecting two disjoint finite sets $A_1, B_1 \subset X \setminus F_1$. At the *n*-th inning player N sects a finite set $F_n \subset X$ containing $F_{n-1} \cup A_{n-1} \cup B_{n-1}$ and player S selects two disjoint finite sets $A_n, B_n \subset X \setminus F_n$. At the end of the game the player S is declared a winner if the

countable sets $\bigcup_{n \in \omega} A_n$ and $\bigcup_{n \in \omega} B_n$ are Γ -separated. Otherwise player N wins the game SG_{Γ}(X).

伺 と く ヨ と く ヨ と

Theorem (B.-Gabriyelyan, 2019)

Let X be a Tychonoff space.

- If $C_p(X)$ is Baire, then player N has no winning strategy in the cl-separation game $SG_{cl}(X)$.
- If B₁(X) is Baire, then player N has no winning strategy in the G_δ-separation game SG_{G_δ}(X).

Here cl and G_{δ} denote the families of closed and G_{δ} -sets in X, respectively.

/⊒ ▶ ◀ ⊒ ▶ ◀

Theorem (B.-Gabriyelyan, 2019)

Let X be a Tychonoff space.

- If $C_p(X)$ is Baire, then player N has no winning strategy in the cl-separation game $SG_{cl}(X)$.
- If B₁(X) is Baire, then player N has no winning strategy in the G_δ-separation game SG_{G_δ}(X).

Here cl and G_{δ} denote the families of closed and G_{δ} -sets in X, respectively.

/□ ▶ ▲ 글 ▶ ▲ 글

Theorem (B.-Gabriyelyan, 2019)

Let X be a Tychonoff space.

- If $C_p(X)$ is Baire, then player N has no winning strategy in the cl-separation game $SG_{cl}(X)$.
- If B₁(X) is Baire, then player N has no winning strategy in the G_δ-separation game SG_{G_δ}(X).

Here cl and G_{δ} denote the families of closed and G_{δ} -sets in X, respectively.

→ < Ξ → <</p>

Let \mathcal{B} be a family of subsets of a topological space X. A subset $D \subset X$ is called \mathcal{B} -dense if $D \cap B \neq \emptyset$ for any $B \in \mathcal{B}$.

Observe that a subset D of a topological space X is dense in X if and only if it is \mathcal{B} -dense for some/any π -base \mathcal{B} for X. A family \mathcal{B} of nonempty open sets of a topological space X is called a π -base for X if each nonempty open set $U \subset X$ contains some set $B \in \mathcal{B}$.

Fact:

For any π -base \mathcal{B} in a Baire space X, any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection.

Definition

A topological space X is called *airy* if there exists a countable family \mathcal{B} of infinite sets in X such that any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection $A \cap B \neq \emptyset$.

Let \mathcal{B} be a family of subsets of a topological space X. A subset $D \subset X$ is called \mathcal{B} -dense if $D \cap B \neq \emptyset$ for any $B \in \mathcal{B}$. Observe that a subset D of a topological space X is dense in X if and only if it is \mathcal{B} -dense for some/any π -base \mathcal{B} for X.

A family \mathcal{B} of nonempty open sets of a topological space X is called a π -base for X if each nonempty open set $U \subset X$ contains some set $B \in \mathcal{B}$.

Fact:

For any π -base \mathcal{B} in a Baire space X, any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection.

Definition

A topological space X is called *airy* if there exists a countable family \mathcal{B} of infinite sets in X such that any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection $A \cap B \neq \emptyset$.

Let \mathcal{B} be a family of subsets of a topological space X. A subset $D \subset X$ is called \mathcal{B} -dense if $D \cap B \neq \emptyset$ for any $B \in \mathcal{B}$. Observe that a subset D of a topological space X is dense in X if and only if it is \mathcal{B} -dense for some/any π -base \mathcal{B} for X. A family \mathcal{B} of nonempty open sets of a topological space X is called a π -base for X if each nonempty open set $U \subset X$ contains some set $B \in \mathcal{B}$.

Fact:

For any π -base \mathcal{B} in a Baire space X, any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection.

Definition

A topological space X is called *airy* if there exists a countable family \mathcal{B} of infinite sets in X such that any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection $A \cap B \neq \emptyset$.

Let \mathcal{B} be a family of subsets of a topological space X. A subset $D \subset X$ is called \mathcal{B} -dense if $D \cap B \neq \emptyset$ for any $B \in \mathcal{B}$. Observe that a subset D of a topological space X is dense in X if and only if it is \mathcal{B} -dense for some/any π -base \mathcal{B} for X. A family \mathcal{B} of nonempty open sets of a topological space X is called a π -base for X if each nonempty open set $U \subset X$ contains some set $B \in \mathcal{B}$.

Fact:

For any π -base \mathcal{B} in a Baire space X, any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection.

Definition

A topological space X is called *airy* if there exists a countable family \mathcal{B} of infinite sets in X such that any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection $A \cap B \neq \emptyset$.

Let \mathcal{B} be a family of subsets of a topological space X. A subset $D \subset X$ is called \mathcal{B} -dense if $D \cap B \neq \emptyset$ for any $B \in \mathcal{B}$. Observe that a subset D of a topological space X is dense in X if and only if it is \mathcal{B} -dense for some/any π -base \mathcal{B} for X. A family \mathcal{B} of nonempty open sets of a topological space X is called a π -base for X if each nonempty open set $U \subset X$ contains some set $B \in \mathcal{B}$.

Fact:

For any π -base \mathcal{B} in a Baire space X, any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection.

Definition

A topological space X is called *airy* if there exists a countable family \mathcal{B} of infinite sets in X such that any \mathcal{B} -dense G_{δ} -sets $A, B \subset X$ have nonempty intersection $A \cap B \neq \emptyset$.

・ロト ・回ト ・ヨト ・ヨト

Theorem (B.-Gabriyelyan)

If a topological space X is airy, then player N has a winning strategy in the G_{δ} -separation game on X.

Corollary

If for a topological space X the function space $B_1(X)$ is Baire, then the space X is non-airy.

/⊒ ▶ ◀ ⊒ ▶ ◀

Theorem (B.-Gabriyelyan)

If a topological space X is airy, then player N has a winning strategy in the G_{δ} -separation game on X.

Corollary

If for a topological space X the function space $B_1(X)$ is Baire, then the space X is non-airy.

Definition (between Todorcevic and Zakrzewski)

A topological space X is called *universally meager* if for any Baire space B having a countable π -base and any continuous map $f : B \to X$ there exists a nonempty open set $U \subset B$ whose image f(U) is finite.

Theorem

Each non-airy space X is universally meager.

Proof.

To be presented by vaiwing hands.

→ < Ξ → </p>

Definition (between Todorcevic and Zakrzewski)

A topological space X is called *universally meager* if for any Baire space B having a countable π -base and any continuous map $f: B \to X$ there exists a nonempty open set $U \subset B$ whose image f(U) is finite.

Theorem

Each non-airy space X is universally meager.

Proof.

To be presented by vaiwing hands.

→ < Ξ → <</p>

Definition (between Todorcevic and Zakrzewski)

A topological space X is called *universally meager* if for any Baire space B having a countable π -base and any continuous map $f: B \to X$ there exists a nonempty open set $U \subset B$ whose image f(U) is finite.

Theorem

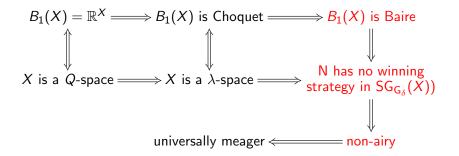
Each non-airy space X is universally meager.

Proof.

To be presented by vaiwing hands.

A 3 3 4 4

The final diagram



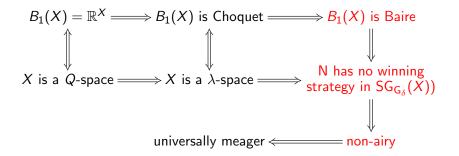
Problem

Find examples distinguishing red properties from the last column.

Example (Zdomskyy, 2019)

Under $\mathfrak{b} = \mathfrak{c}$ there exists an airy universally meager subset $X \subset \mathbb{R}$.

The final diagram



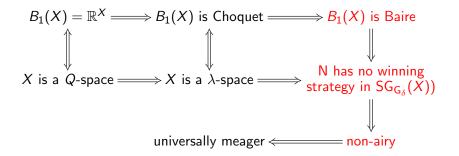
Problem

Find examples distinguishing red properties from the last column.

Example (Zdomskyy, 2019)

Under $\mathfrak{b} = \mathfrak{c}$ there exists an airy universally meager subset $X \subset \mathbb{R}$.

The final diagram



Problem

Find examples distinguishing red properties from the last column.

Example (Zdomskyy, 2019)

Under $\mathfrak{b} = \mathfrak{c}$ there exists an airy universally meager subset $X \subset \mathbb{R}$.

T.Banakh, S.Gabriyelyan, Baire category properties of some Baire type function spaces, preprint.

Thanks for your attention!

and

T.Banakh Baire category properties of some function spaces

3 1 4

Thanks for your attention!

 $\quad \text{and} \quad$

T.Banakh Baire category properties of some function spaces

Happy Birthdays!

