Differentiability and Haar-smallness

Adam Kwela

University of Gdańsk

24th June 2018

X – abelian Polish group. $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ – a semi-ideal ($A \in \mathcal{I} \land B \subseteq A \implies B \in \mathcal{I}$).

Definition (Banakh, Głąb, Jabłońska, Swaczyna)

 $A \subseteq X$ is Haar- \mathcal{I} ($A \in \mathcal{HI}$) if there are a Borel hull $B \supseteq A$ and a continuous map $f : 2^{\omega} \to X$ such that $f^{-1}[B + x] \in \mathcal{I}$ for all $x \in X$.

\mathcal{I}	HI	
\mathcal{N}	Haar-null	
\mathcal{M}	Haar-meager	
$[2^{\omega}]^{\leq \omega}$	Haar-countable	
$[2^{\omega}]^{<\omega}$	Haar-finite	
$[2^{\omega}]^{\leq n}$	Haar- <i>n</i>	

X – abelian Polish group.

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega}) \text{ - a semi-ideal } (A \in \mathcal{I} \ \land \ B \subseteq A \implies B \in \mathcal{I}).$

Definition (Banakh, Głąb, Jabłońska, Swaczyna)

 $A \subseteq X$ is Haar- \mathcal{I} ($A \in \mathcal{HI}$) if there are a Borel hull $B \supseteq A$ and a continuous map $f : 2^{\omega} \to X$ such that $f^{-1}[B + x] \in \mathcal{I}$ for all $x \in X$.

\mathcal{I}	HI	
\mathcal{N}	Haar-null	
\mathcal{M}	Haar-meager	
$[2^{\omega}]^{\leq \omega}$	Haar-countable	
$[2^{\omega}]^{<\omega}$	Haar-finite	
$[2^{\omega}]^{\leq n}$	Haar- <i>n</i>	

X – abelian Polish group.

 $\mathcal{I} \subseteq \mathcal{P}(2^{\omega}) \text{ - a semi-ideal } (A \in \mathcal{I} \ \land \ B \subseteq A \implies B \in \mathcal{I}).$

Definition (Banakh, Głąb, Jabłońska, Swaczyna)

 $A \subseteq X$ is Haar- \mathcal{I} ($A \in \mathcal{HI}$) if there are a Borel hull $B \supseteq A$ and a continuous map $f : 2^{\omega} \to X$ such that $f^{-1}[B + x] \in \mathcal{I}$ for all $x \in X$.

\mathcal{I}	\mathcal{HI}	
\mathcal{N}	Haar-null	
${\mathcal M}$	Haar-meager	
$[2^{\omega}]^{\leq \omega}$	Haar-countable	
$[2^{\omega}]^{<\omega}$	Haar-finite	
$[2^{\omega}]^{\leq n}$	Haar- <i>n</i>	

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

- \mathcal{HI} is a translation-invariant semi-ideal (for each \mathcal{I}).
- Haar- $n \subseteq$ Haar- $(n + 1) \subseteq$ Haar-finite \subseteq Haar-countable $\subseteq \mathcal{HN} \cap \mathcal{HM}$

Theorem (K.; Banakh, Głąb, Jabłońska, Swaczyna)

- All countable sets are Haar-1.
- There is an uncountable Haar-1 set.
- Cantor set is Haar-2, but not Haar-1.

Theorem (K.)

- None of the above inclusions can be reversed.
- Haar-finite sets do not form an ideal.

f is somewhere differentiable $(f \in SD[0,1])$ if $D(f) \neq \emptyset$.

Theorem (Banach)

 $\mathcal{SD}[0,1]$ is meager in C[0,1].

Theorem (Hunt)

f is somewhere differentiable $(f \in SD[0, 1])$ if $D(f) \neq \emptyset$.

Theorem (Banach) SD[0,1] is meager in C[0,1].

Theorem (Hunt)

f is somewhere differentiable $(f \in SD[0, 1])$ if $D(f) \neq \emptyset$.

Theorem (Banach) SD[0,1] is meager in C[0,1].

Theorem (Hunt)

f is somewhere differentiable $(f \in SD[0, 1])$ if $D(f) \neq \emptyset$.

Theorem (Banach)SD[0,1] is meager in C[0,1].

Theorem (Hunt)

$f \in C[0,1]^k$ is somewhere differentiable $(f \in SD[0,1]^k)$ if it is differentiable at some point along some vector.

Theorem (Essentially Banach)

 $\mathcal{SD}[0,1]^k$ is meager in $C[0,1]^k$ (for each k).

$f \in C[0,1]^k$ is somewhere differentiable $(f \in SD[0,1]^k)$ if it is differentiable at some point along some vector.

Theorem (Essentially Banach)

 $\mathcal{SD}[0,1]^k$ is meager in $C[0,1]^k$ (for each k).

 $A\subseteq X$ is thick if for any compact set $K\subseteq X$ there is $x\in X$ with $K+x\subseteq A$

A is thick $\iff \forall_{\mathcal{I} \neq \mathcal{P}(2^{\omega})} A$ is not Haar- \mathcal{I} .

Proposition (K.-Wołoszyn)

If $k \geq 2$ then $\mathcal{SD}[0,1]^k$ is thick in $C[0,1]^k$.

Actually, for each vector $v \in \mathbb{R}^k$ the set of functions differentiable along v at c many points is thick.

Problem

 $A\subseteq X$ is thick if for any compact set $K\subseteq X$ there is $x\in X$ with $K+x\subseteq A$

A is thick $\iff \forall_{\mathcal{I} \neq \mathcal{P}(2^{\omega})} A$ is not Haar- \mathcal{I} .

Proposition (K.-Wołoszyn)

If $k \geq 2$ then $SD[0,1]^k$ is thick in $C[0,1]^k$.

Actually, for each vector $v \in \mathbb{R}^k$ the set of functions differentiable along v at c many points is thick.

Problem

 $A\subseteq X$ is thick if for any compact set $K\subseteq X$ there is $x\in X$ with $K+x\subseteq A$

A is thick $\iff \forall_{\mathcal{I} \neq \mathcal{P}(2^{\omega})} A$ is not Haar- \mathcal{I} .

Proposition (K.-Wołoszyn)

If $k \geq 2$ then $\mathcal{SD}[0,1]^k$ is thick in $\mathbb{C}[0,1]^k$.

Actually, for each vector $v \in \mathbb{R}^k$ the set of functions differentiable along v at c many points is thick.

Problem

 $A\subseteq X$ is thick if for any compact set $K\subseteq X$ there is $x\in X$ with $K+x\subseteq A$

A is thick $\iff \forall_{\mathcal{I} \neq \mathcal{P}(2^{\omega})} A$ is not Haar- \mathcal{I} .

Proposition (K.-Wołoszyn)

If $k \geq 2$ then $\mathcal{SD}[0,1]^k$ is thick in $\mathbb{C}[0,1]^k$.

Actually, for each vector $v \in \mathbb{R}^k$ the set of functions differentiable along v at c many points is thick.

Problem

 $A\subseteq X$ is thick if for any compact set $K\subseteq X$ there is $x\in X$ with $K+x\subseteq A$

A is thick $\iff \forall_{\mathcal{I} \neq \mathcal{P}(2^{\omega})} A$ is not Haar- \mathcal{I} .

Proposition (K.-Wołoszyn)

If $k \geq 2$ then $\mathcal{SD}[0,1]^k$ is thick in $\mathbb{C}[0,1]^k$.

Actually, for each vector $v \in \mathbb{R}^k$ the set of functions differentiable along v at c many points is thick.

Problem

 \mathcal{I} - "nice" σ -ideal $\mathcal{D}(\mathcal{A}) = \{f \in C[0,1] : D(f) \in \mathcal{A}\}$

$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

 \mathcal{I} - "nice" σ -ideal $\mathcal{D}(\mathcal{A}) = \{ f \in C[0,1] : D(f) \in \mathcal{A} \}$

$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

・ロト ・回 ト ・注 ト ・注 ト

æ

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup \mathcal{I}^*)^c$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

The set SD[0,1] of somewhere differentiable functions is Haar-null.

Actually, Hunt showed that it is Haar- \mathcal{E} , where $\mathcal{E} \subseteq \mathcal{N} \cap \mathcal{M}$ is the σ -ideal generated by closed null sets.

```
Note that \mathcal{D}(\mathcal{I} \setminus \{\emptyset\}) \subseteq \mathcal{SD}[0,1].
```

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (Hunt)

The set $\mathcal{SD}[0,1]$ of somewhere differentiable functions is Haar-null.

Actually, Hunt showed that it is Haar- \mathcal{E} , where $\mathcal{E} \subsetneq \mathcal{N} \cap \mathcal{M}$ is the σ -ideal generated by closed null sets.

```
Note that \mathcal{D}(\mathcal{I} \setminus \{\emptyset\}) \subseteq \mathcal{SD}[0,1].
```

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (Hunt)

The set $\mathcal{SD}[0,1]$ of somewhere differentiable functions is Haar-null.

Actually, Hunt showed that it is Haar- \mathcal{E} , where $\mathcal{E} \subsetneq \mathcal{N} \cap \mathcal{M}$ is the σ -ideal generated by closed null sets.

Note that $\mathcal{D}(\mathcal{I} \setminus \{\emptyset\}) \subseteq \mathcal{SD}[0,1].$

$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$Haar\text{-}\mathcal{E}$	Haar-countable
Haar-countable	Haar-finite
Haar-1	_
	$\mathcal{D}(\mathcal{A}) \in$ Haar- \mathcal{E} Haar-countable

Theorem (Hunt)

The set SD[0,1] of somewhere differentiable functions is Haar-null.

Actually, Hunt showed that it is Haar- \mathcal{E} , where $\mathcal{E} \subsetneq \mathcal{N} \cap \mathcal{M}$ is the σ -ideal generated by closed null sets.

```
Note that \mathcal{D}(\mathcal{I} \setminus \{\emptyset\}) \subseteq \mathcal{SD}[0,1].
```

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]:$	$D(f) \in \mathcal{A}$
--	--	------------------------

$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^c$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (K., Wołoszyn)

If \mathcal{I} contains some perfect set, then $\mathcal{D}(\mathcal{I} \setminus \{\emptyset\})$ is not Haar-countable. In particular, $S\mathcal{D}[0,1]$ is not Haar-countable.

 \mathcal{I} – "nice" σ -ideal $\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: D(f) \in \mathcal{A}\}$

$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (K., Wołoszyn)

If \mathcal{I} contains some perfect set, then $\mathcal{D}(\mathcal{I} \setminus \{\emptyset\})$ is not Haar-countable. In particular, $\mathcal{SD}[0,1]$ is not Haar-countable.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: \ D(f) \in \mathcal{A}\}$	
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

A $\sigma\text{-ideal}\ \mathcal I$ is ccc, if every family of pairwise disjoint Borel sets not belonging to $\mathcal I$ is countable.

Theorem (K., Wołoszyn)

If \mathcal{I} is ccc, then the set $\mathcal{D}(\mathcal{I}^c)$ of functions differentiable on an \mathcal{I} -positive set is Haar-countable.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: \ D(f) \in \mathcal{A}\}$	
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$		Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

A $\sigma\text{-ideal}\ \mathcal I$ is ccc, if every family of pairwise disjoint Borel sets not belonging to $\mathcal I$ is countable.

Theorem (K., Wołoszyn)

If \mathcal{I} is ccc, then the set $\mathcal{D}(\mathcal{I}^c)$ of functions differentiable on an \mathcal{I} -positive set is Haar-countable.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: \ D(f) \in \mathcal{A}\}$	
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

A $\sigma\text{-ideal}\ \mathcal I$ is ccc, if every family of pairwise disjoint Borel sets not belonging to $\mathcal I$ is countable.

Theorem (K., Wołoszyn)

If \mathcal{I} is ccc, then the set $\mathcal{D}(\mathcal{I}^c)$ of functions differentiable on an \mathcal{I} -positive set is Haar-countable.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: \ D(f) \in \mathcal{A}\}$	
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

A $\sigma\text{-ideal}\ \mathcal I$ is ccc, if every family of pairwise disjoint Borel sets not belonging to $\mathcal I$ is countable.

Theorem (K., Wołoszyn)

If \mathcal{I} is ccc, then the set $\mathcal{D}(\mathcal{I}^c)$ of functions differentiable on an \mathcal{I} -positive set is Haar-countable.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
A =	$\mathcal{D}(\mathcal{A}) \in$	$\mathcal{D}(A) \notin$

\mathcal{A} –	$\nu(\mathcal{A}) \in$	$\nu(\mathcal{A}) \notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (K., Wołoszyn)

If $\mathcal I$ contains no interval, then the set $\mathcal D((\mathcal I\cup\mathcal I^*)^c)$ is not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	Haar- ${\cal E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	-

Theorem (K., Wołoszyn)

If \mathcal{I} contains no interval, then the set $\mathcal{D}((\mathcal{I} \cup \mathcal{I}^*)^c)$ is not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{t\}$	$\in C[0,1]: D(t) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	-

Theorem (Banakh, Głąb, Jabłońska, Swaczyna)

If A - A is meager, then A is Haar-1.

 $D(f), D(g) \in \mathcal{I}^* \implies f - g \in \mathcal{SD}[0, 1].$

Theorem (Banach)

SD[0,1] is meager in C[0,1].

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{t\}$	$\in C[0,1]: D(t) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (Banakh, Głąb, Jabłońska, Swaczyna)

If A - A is meager, then A is Haar-1.

 $D(f), D(g) \in \mathcal{I}^* \implies f - g \in \mathcal{SD}[0, 1].$

Theorem (Banach)

SD[0,1] is meager in C[0,1].

4)

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{t\}$	$\in C[0,1]: D(t) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (Banakh, Głąb, Jabłońska, Swaczyna)

If A - A is meager, then A is Haar-1.

 $D(f), D(g) \in \mathcal{I}^* \implies f - g \in \mathcal{SD}[0, 1].$

Theorem (Banach)

SD[0,1] is meager in C[0,1].

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{t\}$	$\in C[0,1]: D(t) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

Theorem (Banakh, Głąb, Jabłońska, Swaczyna)

If A - A is meager, then A is Haar-1.

 $D(f), D(g) \in \mathcal{I}^* \implies f - g \in \mathcal{SD}[0, 1].$

Theorem (Banach)

 $\mathcal{SD}[0,1]$ is meager in C[0,1].

• >

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$		Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

"nice" = ccc + contains a perfect set + contains no interval

 ${\mathcal N}$ and ${\mathcal M}$ are "nice".

ollary The set of functions differentiable on a set of positive measure (set of second category) is Haar-countable, but not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

"nice" = ccc + contains a perfect set + contains no interval

${\mathcal N}$ and ${\mathcal M}$ are "nice".

Corollary

 (a) The set of functions differentiable on a set of positive measure (set of second category) is Haar-countable, but not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	-

"nice" = ccc + contains a perfect set + contains no interval

${\mathcal N}$ and ${\mathcal M}$ are "nice".

Corollary

 (a) The set of functions differentiable on a set of positive measure (set of second category) is Haar-countable, but not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

"nice" = ccc + contains a perfect set + contains no interval

${\mathcal N}$ and ${\mathcal M}$ are "nice".

Corollary

(a) The set of functions differentiable on a set of positive measure (set of second category) is Haar-countable, but not Haar-finite.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f$	$\in C[0,1]: D(f) \in \mathcal{A}\}$
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite
\mathcal{I}^*	Haar-1	_

"nice" = ccc + contains a perfect set + contains no interval

${\mathcal N}$ and ${\mathcal M}$ are "nice".

Corollary

- (a) The set of functions differentiable on a set of positive measure (set of second category) is Haar-countable, but not Haar-finite.
- (b) The set of functions differentiable on a set of full measure (comeager set) is Haar-1.

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1]: D(f) \in \mathcal{A}\}$
--	---

\mathcal{A} :	=	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$
$\mathcal{I} \setminus \{$		Haar- ${\cal E}$	Haar-countable
$(\mathcal{I} \cup \mathcal{I})$	$\mathcal{I}^*)^c$	Haar-countable	Haar-finite
\mathcal{I}^*	k	Haar-1	_

"nice" = ccc + contains a perfect set + contains no interval

 $\sigma\text{-ideal}$ of countable sets is not "nice".

Problem

Is the set of functions differentiable at c many points Haar-countable?

\mathcal{I} – "nice" σ -ideal	$\mathcal{D}(\mathcal{A}) = \{f \in C[0,1] : D(f) \in \mathcal{A}\}$		
$\mathcal{A} =$	$\mathcal{D}(\mathcal{A})\in$	$\mathcal{D}(\mathcal{A})\notin$	
$\mathcal{I}\setminus\{\emptyset\}$	$Haar\text{-}\mathcal{E}$	Haar-countable	
$(\mathcal{I}\cup\mathcal{I}^*)^{c}$	Haar-countable	Haar-finite	
\mathcal{I}^*	Haar-1	_	

"nice" = ccc + contains a perfect set + contains no interval

 $\sigma\text{-ideal}$ of countable sets is not "nice".

Problem

Is the set of functions differentiable at c many points Haar-countable?

• >

Thank you for your attention!