Haar-open sets: the right way of generalizing the Steinhaus Sum Theorem to non-locally compact groups?

Taras Banakh

Lviv & Kielce

Konopnica, 23 June 2018

Theorem (Steinhaus, 1920)

For any measurable subsets A, $B \subset \mathbb{R}$ of positive Lebesgue measure

(+) the sum-set $A + B := \{a + b : a \in A, b \in B\}$ has non-empty interior in \mathbb{R} and

-) the difference set $A - A := \{a - b : a, b \in A\}$ is a neighborhood of zero in \mathbb{R} .

Theorem (Steinhaus, 1920)

For any measurable subsets A, $B \subset \mathbb{R}$ of positive Lebesgue measure

- (+) the sum-set $A + B := \{a + b : a \in A, b \in B\}$ has non-empty interior in \mathbb{R} and
- (-) the difference set A − A := {a − b : a, b ∈ A} is a neighborhood of zero in R.

Theorem (Weil, 1965)

For any measurable subsets $A, B \subset X$ of positive Haar measure in a locally compact topological group X

- (+) the sum-set $A + B := \{a + b : a \in A, b \in B\}$ has non-empty interior in X and
- (-) the difference set $A A := \{a b : a, b \in A\}$ is a neighborhood of zero in X.

What about non-locally compact groups?

Theorem (Weil, 1965)

For any measurable subsets $A, B \subset X$ of positive Haar measure in a locally compact topological group X

- (+) the sum-set $A + B := \{a + b : a \in A, b \in B\}$ has non-empty interior in X and
- (-) the difference set $A A := \{a b : a, b \in A\}$ is a neighborhood of zero in X.

What about non-locally compact groups?

Definition (Christensen, 1972)

A Borel subset A of a topological group X is *Haar-null* if there exists a σ -additive Borel probability measure μ on X such that $\mu(A + x) = 0$ for all $x \in X$.

Theorem (Christensen, 1972)

A Borel subset A of a locally compact group X is Haar-null if and only if A has Haar measure zero.

Fact (folklore)

A Borel subset A of a Polish group X is not Haar-null if A is thick in the sense that for any compact set $K \subset X$ there exists $x \in X$ such that $K + x \subset A$.

Definition (Christensen, 1972)

A Borel subset A of a topological group X is *Haar-null* if there exists a σ -additive Borel probability measure μ on X such that $\mu(A + x) = 0$ for all $x \in X$.

Theorem (Christensen, 1972)

A Borel subset A of a locally compact group X is Haar-null if and only if A has Haar measure zero.

Fact (folklore)

A Borel subset A of a Polish group X is not Haar-null if A is thick in the sense that for any compact set $K \subset X$ there exists $x \in X$ such that $K + x \subset A$.

Definition (Christensen, 1972)

A Borel subset A of a topological group X is *Haar-null* if there exists a σ -additive Borel probability measure μ on X such that $\mu(A + x) = 0$ for all $x \in X$.

Theorem (Christensen, 1972)

A Borel subset A of a locally compact group X is Haar-null if and only if A has Haar measure zero.

Fact (folklore)

A Borel subset A of a Polish group X is not Haar-null if A is thick in the sense that for any compact set $K \subset X$ there exists $x \in X$ such that $K + x \subset A$.

If a Borel subset A of a complete metric abelian group X is not Haar null, then A - A is a neighborhood of zero in X.

This theorem shows that the difference part of Steinhaus-Weil Theorem generalizes to non-locally compact groups. What about the sum part of the Steinhaus-Weil Theorem?

Example

The closed set $A := [0, +\infty)^{\omega}$ is not Haar null in the Polish group $X := \mathbb{R}^{\omega}$ and A - A = X. But A + A = A is nowhere dense in X.

If a Borel subset A of a complete metric abelian group X is not Haar null, then A - A is a neighborhood of zero in X.

This theorem shows that the difference part of Steinhaus-Weil Theorem generalizes to non-locally compact groups. What about the sum part of the Steinhaus-Weil Theorem?

Example

The closed set $A := [0, +\infty)^{\omega}$ is not Haar null in the Polish group $X := \mathbb{R}^{\omega}$ and A - A = X. But A + A = A is nowhere dense in X.

If a Borel subset A of a complete metric abelian group X is not Haar null, then A - A is a neighborhood of zero in X.

This theorem shows that the difference part of Steinhaus-Weil Theorem generalizes to non-locally compact groups. What about the sum part of the Steinhaus-Weil Theorem?

Example

The closed set $A := [0, +\infty)^{\omega}$ is not Haar null in the Polish group $X := \mathbb{R}^{\omega}$ and A - A = X. But A + A = A is nowhere dense in X.

If a Borel subset A of a complete metric abelian group X is not Haar null, then A - A is a neighborhood of zero in X.

This theorem shows that the difference part of Steinhaus-Weil Theorem generalizes to non-locally compact groups. What about the sum part of the Steinhaus-Weil Theorem?

Example

The closed set $A := [0, +\infty)^{\omega}$ is not Haar null in the Polish group $X := \mathbb{R}^{\omega}$ and A - A = X. But A + A = A is nowhere dense in X.

A subset A of a topological group X is called *locally thick* (or else *Haar-open*) if for any compact subset $K \subset X$ and point $p \in K$ there exists a neighborhood $O_p \subset K$ of x in K such that $O_p \subset A + x$ for some $x \in X$.

Proposition

A subset A of a Polish abelian group X is Haar-open if and only if for any compact set $K \subset X$ there exists $x \in X$ such that $K \cap (A + x)$ has non-empty interior in K.

Example

The set $A = [0, +\infty)^{\omega}$ is (locally) thick in the Polish group \mathbb{R}^{ω} .

A subset A of a topological group X is called *locally thick* (or else *Haar-open*) if for any compact subset $K \subset X$ and point $p \in K$ there exists a neighborhood $O_p \subset K$ of x in K such that $O_p \subset A + x$ for some $x \in X$.

Proposition

A subset A of a Polish abelian group X is Haar-open if and only if for any compact set $K \subset X$ there exists $x \in X$ such that $K \cap (A + x)$ has non-empty interior in K.

Example

The set $A = [0, +\infty)^{\omega}$ is (locally) thick in the Polish group \mathbb{R}^{ω} .

A subset A of a topological group X is called *locally thick* (or else *Haar-open*) if for any compact subset $K \subset X$ and point $p \in K$ there exists a neighborhood $O_p \subset K$ of x in K such that $O_p \subset A + x$ for some $x \in X$.

Proposition

A subset A of a Polish abelian group X is Haar-open if and only if for any compact set $K \subset X$ there exists $x \in X$ such that $K \cap (A + x)$ has non-empty interior in K.

Example

The set $A = [0, +\infty)^{\omega}$ is (locally) thick in the Polish group \mathbb{R}^{ω} .

Theorem

Let $X := \prod_{n \in \omega} X_n$ be the countable product of Abelian locally compact topological groups. If Borel sets $A, B \subset X$ are not Haar-null in X, then the sum-set A + B is Haar-open in X.

A topological group X is defined to have the property (+) if for any Borel set A, B in X the sum-set A + B is Haar-open in X if A, B are not Haar-null in X.

Main Theorem implies that the countable product of Abelian locally compact topological groups has the property (+).

Problem

Which Abelian Polish groups have property (+)?

Conjecture (Bogachev)

A Fréchet (= locally convex complete metric vector) space X has property (+) if and only if X is nuclear.

A topological group X is defined to have the property (+) if for any Borel set A, B in X the sum-set A + B is Haar-open in X if A, B are not Haar-null in X.

Main Theorem implies that the countable product of Abelian locally compact topological groups has the property (+).

Problem

Which Abelian Polish groups have property (+)?

Conjecture (Bogachev)

A Fréchet (= locally convex complete metric vector) space X has property (+) if and only if X is nuclear.

A topological group X is defined to have the property (+) if for any Borel set A, B in X the sum-set A + B is Haar-open in X if A, B are not Haar-null in X.

Main Theorem implies that the countable product of Abelian locally compact topological groups has the property (+).

Problem

Which Abelian Polish groups have property (+)?

Conjecture (Bogachev)

A Fréchet (= locally convex complete metric vector) space X has property (+) if and only if X is nuclear.

▲□ ► < □ ► </p>

A topological group X is defined to have the property (+) if for any Borel set A, B in X the sum-set A + B is Haar-open in X if A, B are not Haar-null in X.

Main Theorem implies that the countable product of Abelian locally compact topological groups has the property (+).

Problem

Which Abelian Polish groups have property (+)?

Conjecture (Bogachev)

A Fréchet (= locally convex complete metric vector) space X has property (+) if and only if X is nuclear.

T.Banakh, Haar-open sets: a right way of generalizing the Steinhaus sum theorem to non-locally compact groups?, preprint (https://arxiv.org/abs/1805.07515).

Wielkie dzięki

za zaproszenie i organizacje warsztatów!

Thank you!

Wielkie dzięki

za zaproszenie i organizacje warsztatów!

Thank you!

Wielkie dzięki

za zaproszenie i organizacje warsztatów!

Thank you!

