Aleksandra Świątczak

Lodz University of Technology
Functional equations characterizing differential operators
Results of joint work with Włodzimierz Fechner and Eszter Gselmann. If $k \geq 2$ is a positive integer, $\Omega \subset \mathbb{R}^{N}$ is a domain then by the well-known properties of the Laplacian and the gradient, we have

$$
\Delta(f \cdot g)=g \Delta f+f \Delta g+2\langle\nabla f, \nabla g\rangle
$$

for all $f, g \in \mathcal{C}^{k}(\Omega, \mathbb{R})$. Due to the results of König-Milman [1], the converse is also true under some assumptions. Thus the main aim is this talk is to study the equation

$$
T(f \cdot g)=f T(g)+T(f) g+2 B(A(f), A(g)) \quad(f, g \in P)
$$

where Q and R are commutative rings and P is a subring of Q, further $T: P \rightarrow$ Q and $A: P \rightarrow R$ are additive mappings, while $B: R \times R \rightarrow Q$ is a symmetric and bi-additive mapping.

References

[1] König, Herman and Milman, Vitali. Operator Relations Characterizing Derivatives. Springer, 2018.

